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Organization of growing random networks
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The organizational development of growing random networks is investigated. These growing networks are
built by adding nodes successively, and linking each to an earlier node of degmid an attachment
probability A, . WhenA, grows more slowly than linearly witk, the number of nodes with links, N,(t),
decays faster than a power lawkipwhile for A, growing faster than linearly ik, a single node emerges which
connects to nearly all other nodes. Whignis asymptotically linearN,(t) ~tk™ ", with » dependent on details
of the attachment probability, but in the range 2<e«. The combined age and degree distribution of nodes
shows that old nodes typically have a large degree. There is also a significant correlation in the degrees of
neighboring nodes, so that nodes of similar degree are more likely to be connected. The size distributions of the
in and out components of the network with respect to a given node—namely, its “descendants” and
“ancestors”"—are also determined. The in component exhibits a robustpower-law tail, wheres is the
component size. The out component has a typical size of orderalmd it provides basic insights into the
genealogy of the network.
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I. INTRODUCTION Because of the dynamic nature of the citation and web
graphs, it is not surprising that their topologies at any fixed
Networks of many interacting units play an important roletime are very different from classical random graphs. In dis-
in epidemiology, ecology, gene regulation, neural networkstinction to the power-law degree distributions of the citation
and many other fieldf1—-3]. In many studies of these net- and web graphs, random graphs have a Poisson node degree
works, the number of nodes is considered to be fixed, and thaistribution. Here “node degree” is defined as the number of
presence of a link between two nodes is treated as a randolinks at a node. To overcome the shortcomings of random
event independent of the other links. These assumptions leagtaphs in describing the dynamic natures of these systems,
naturally to random graph moddl4,5]. While these models both “small-world” networks[23,24] and growing random
have a rich behavior and considerable utility, they are nohetwork modelg20,25-28 were recently introduced. The
necessarily appropriate for describirggowing networks, former are aimed at understanding the relatively small diam-
where the addition of nodes and links may depend on locadter of large graphs of socially interacting units, while the
features of the network where the growth event is takindatter seek to understand the growth dynamics.
place. In this paper, we provide a comprehensive quantitative
Typical examples of such growing networks include description of a simplgrowing network(GN) model. Our
transportation or electrical distribution systems, whereresults are based on an analysis of the rate equations for the
growth occurs in response to population-driven demandsdensities of nodes of a given degree. This approach bears
Two currently appealing examples are the distribution of scimany similarities to the rate equations for the kinetics of
entific citations and the structure of the worldwide web. Foraggregation. The rate equations for the evolution of growing
both these examples there are now considerable data availetworks are relatively simple, and the results that emerge
able, in spite of the very rapid growth of these systems. Irare comprehensive. Thus it appears that the rate equation
the former case, one may consider papers to be nodes ofraethod is better suited for probing the structure of growing
graph and citations to be links. The structure of the resultingandom networks compared to the classical approaches for
“citation graph” was originally studied by Lotka in 1926 analyzing random graphs, such as probabiligticor gener-
[6], and then by many othef§—13]. The basic feature of ating function[5] techniques. The rate equation approach
this citation distribution is that it appears to have a relativelyalso has the advantage that it can be adapted to other evolv-
steep power-law tail; thus most papers are minimally citedng graph systems, including networks with the addition and
while highly cited papers are rare. deletion of nodes and links, as well as networks with link
Similarly, in the web graph, much structural data wererewiring.
recently obtainedl14—21] which suggest that the number of ~ We will specifically investigate two types of mode(s) a
nodes withk links has a power-law tail, with an exponent GN in which nodes are added one at a time, and a link is
that is somewhat larger than 2. This power-law tail againestablished with a pre-existing node according to an attach-
corresponds to the basic fact that most nodes of the welment probabilityA, which depends only on the degree of the
graph are unimportant, while a relatively small number oftarget noddFig. 1); and(b) a GN with redirectiofGNR), in
nodes garner a large fraction of “hits.” Due to the qualita- which the newly created link can be redirected to the "“an-
tive similarities between the citation and web graphs, in-cestor” node of the original target node. An important fea-
sights developed in the field of bibliometri€8] have been ture of these models is that the links afieected and the
applied to help understand the structure of the \W&4. resulting graphs have a simple treelike topology. The moti-
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© publications, and the directed link from one paper to another
as a citation to the earlier publication. In terms of the web
(8) graph, nodes are web pages and directed links are hyperlinks.
(2r/—3 O We will refer to the node to which the link is directed as the
D °. ancestorof the current node.
@/ s .. As the network grows, a degree distributidly(t), de-
. fined as the average number of nodes wktlinks (k—1
(&) © incoming and 1 outgoing builds up. The initial node is
. _ ) . unique, as it does not have an outgoing link. The basic in-
FIG. 1. Schematic illustration of the evolution of the growing gredient which determines the structure of the network is the

random network. Nodes are added sequentially, and a single lin . -
joins the new node to an earlier node. In this example, node 1 ha%ttachment kemnel @ defined as the probability that the

degree 5, node 2 has degree 3, nodes 4 and 6 have degree 2, anon:ﬁywy introduced node links to an exis.ting node which al-
the remaining nodes have degree 1. Also note that node 1 is tH&ady haklinks. On general grounds, this attachment kernel

“ancestor” of node 6, while node 10 is the descendant of node 6.Should be a nondecreasing function lofand natural sce-
narios are attachment kernels with a power-law dependence

vation for the GNR model is that this redirection processon k. For the linear kernel,, the GN reduces to the scale free

roughly mimics how we mightlazily) construct the refer- model introduced by Barabaand Albert[20] and further

ences to this paper. In addition to papers that we peruse aravestigated in Refd.25-27.

cite directly, we are also likely to incorporate some of the The general homogeneous modgkE k?, with y=0, was

references within these papers as part of our reference list. iavestigated in Ref[ 28], where it was found that the degree

related “copying” process has also been invoked to describelistribution N, (t) crucially depends on the value of For

the organization of the wef5]. y<1, the linking probability grows weakly with the node
One of our primary results is that for asymptotically linear popularity, andN,(t) decreases as a stretched exponential in

attachment kernel#~k ask—, the degree Qistribution k for any t. The complementary case of>1 leads to a

of the GN has a power-law formi,(t)~tk™", with » tun-  phenomenon akin to gelatidi29] in which a single “gel”

able in the range 2 v<<ec. By choosing the control param- ,5de links to nearly every other node. Fgr2, this phe-

eters of our model in a plausible manner, it is then easy (Qomenon is so extreme that the number of links between

reproduce quantitative observations about the node degr%‘?her nodes is finite in an infinite graph. We shall show that

d'sltrr]'tgj:gnlIowged\évf?nbe%ipgl\l and GNR models precisely these results also apply for the more general situation where
. ’ i LY - " -
and then determine their node degree distributions in Sec. Iﬂo‘." k. as k—e, in addition to the strictly homogeneous
r§|tuat|on whereA,=k?.

by the rate equation approach. Different distributions arise i . _ .

the GN model which depend on the asymptotic behavior of The borderline case Of an asymptot]cally I|near attach-
the attachment probability as a function of node degree. IfM€Nt kemelA,~k, is particularly intriguing as it leads to
Sec. IV, we investigate the joint age-degree distribution, andV«~K ™", with the exponenw tunable toany value larger
find (not surprisingly that “old” nodes are typically more than 2 depending on finer details of the attachment kernel. In
highly connected. In Sec. V, we study the correlations whicHarticular, the strictly linear kernek=k leads tov=3.
develop between the degrees of connected nodes as the nefowever, by changing the value of a single attachment prob-
work grows. In Sec. VI, we study a more global measure ofbility, for exampleA; = « andA,=k for k>2, any value of

the network, namely, the size distributions of the in compo-v>2 is possible. This sensitivity of the asymptotic behavior
nent and the out component. With respect to a given npde to microscopic details indicates that the case of the attach-
the in component is the set of nodes which can reach rode ment indexy=1 is marginal. A related phenomenon occurs
via a directed path of links. Conversely, the out component i1 constant-kernel aggregation, where the asymptotic kinetics
the set nodes which can be reached from nedéa a di- IS sensitively dependent on the actual values of the reaction
rected path. The former exhibits a robust power-law siz¢ate[30,31].

distribution which appears to be independent of the attach-

ment probability. The latter distribution predicts a network B. Growing network with redirection (GNR)

“diameter” which grows as Iy and also provides basic in-
sights into the genealogy of the network. We conclude i
Sec. VII.

The GN is built by simultaneous node and link addition,
Mnd disregards other elemental processes which can occur in
the development of large networks. In the context of the
web, these include node and link deletitfor out-of-date
Il. MODELS websites, link rewiring, the tendency of a new node to con-
nect to nearby nodes, and the copying of links from existing
nodes to new nodes. The GNR model incorporates a simple

In the GN, we introduce a new node at each time step, antbrm of link rewiring into the GN model. At each time step a
link it to one of the earlier nodes in the netwdikg. 1). This  new noden is added, and an earlier nodds selecteduni-
leads to a network which has a topology ofdirected tree  formly as a possible “target” for attachment. With a prob-
graph. In terms of citations, we may interpret the nodes aability 1—r, the link fromn to x is created; in this case, the

A. Growing network
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last term on the right-hand side of E(.) accounts for the
continuous introduction of new nodes with no incoming
links. We also sefNy,=0, so that Eq(1) applies for allk
=1.

At a fundamental level, it is worth noting that E¢l)
describes the symbolic reactigi]—[k+1]. Many other
reactions, such as the Becker+idg theory of nucleation
[35], additive polymerizatioi36], hydrolysis[37], catalysis,
and submonolayer epitaxial growftB8], fit into this scheme.
However, there is one important difference in that we con-
sider strictly a single connected clustéhe growing net-

FIG. 2. |||UStI’atI0n of the basic processesiin the GNR modelwork)’ Wh'le |n the context Of aggregatlon_“ke processeS’
The new node(solid) selects a target node With probability 1 one generally deals with a collection of clusters. The effect
—r alink is established to this target nodttashed arrol while ot having more than one cluster in the framework of growing
W|th propabllltyr the link is established with the ancestor f networks is currently under investigati¢89).

(thick solid arrow. We start by solving the equations for the low-order mo-

o . ) ~ments of the degree distribution, which are defined by
evolution is the same as in the GN. However, with probabil-y, o()=,=1]"N;(t). Summing Eqs(1) over allk gives the

|(t|¥i£;, t2f)1e link isredirectedto the ancestor nodg of nodex .. equation for the total number of nodés,=1, whose

A model of this spirit was recently mentioned in the con- solution is M(t) =Mo(0)+t. The first momentthe total

text of web developmenfl5]. A related model was also "umber of link endpoings obeys M,=2, which gives
proposed long ago by Simdi82,33 to describe the word M, (t)=M4(0)+2t. The first two moments'are Fherefore
frequencies of English text. The Simon model gives a powerdependenof the attachment kerned, while higher mo-
law frequency distribution whose exponent is tunable inments and the degree distribution itself do depend on the
manner which closely mirrors the behavior in the GNRKernelA. . ,
model. The Simon model was also recently applied to ex- 10 develop an appreciation for the types of behavior that
plain power-law distributions in the frequency of family can occur, consider the linear kerrgl=k, for which A(t)
names34]. coincides withM ((t). In this case, we can solve E.) for
While at first sight the GNR model appears complicated @n arb_itrar_y initial c_ondition. Howeve_r, _since the long-time
we shall see that its characteristics can be obtained in B€havior is most interesting, we limit ourselves to the
simple fashion. Another very helpful and surprising property@symptotic regimet(—) where the initial condition is ir-
of the GNR model with a uniform initial attachment prob- relevant. Using thereforb!, =2t, we solve Eq(1) and ob-
ability is that it is equivalent to a GN with a shifted linear tain N;=2t/3, N,=1/6, etc., which implies that eacNy
attachment kernel ando redirection. We shall exploit this grows linearly with time. Accordingly, we substituté,(t)
equivalence extensively in the following. Nevertheless, we=thy in Eqg. (1) to yield the simple recursion relation
consider the GNR model separately, as in many cases tH&=Nk-1(k—1)/(k+2). Solving forn, gives
rate equations for the GNR model wittuaiform attachment
kernel is simpler to appreciate than the rate equations for a 4
GN with a shifted linear attachment kernel. N kT 1) (k1 2) " 2

lll. DEGREE DISTRIBUTION In the context of discrete functions defined on the positive

A. GN model integers, this distribution is algebraic over the entire range of
k. Indeed, as explained in Rg¢#0], the proper analog of the
continuouspower-law functionf(x)=x"* is the discrete
function f, ,=T'(k)/T"(k+\), wherel" is the Euler gamma
dN, function. Rewriting Eq(2) asn=4I'(k)/I'(k+3), we see
W:A_l[Aklek—l_Aka]_F k1 - (1)  thatn, is indeed algebraic over the entire rarige 1.
Returning to more general attachment kernels, let us as-
. ) ) sume that the degree distribution afa¢t) both grow linearly
The first term on the right-hand side of Ed) accounts for  jith time. We anticipate that this hypothesis will hold for
the process in which a node wikir-1 links is connected to  attachment kernels which do not grow faster than linearly
the new node, leading to a gain in the number of nodes withyjth k. SubstitutingN,(t) =tn, and A(t)= ut into Eq. (1),
k links. This occurs with a prObabiIit)Ak,l/A, where we obtain the recursion relationk: nk*lAk*l/(lu’—’_Ak)
A(t)=Z;=1AN;(t) is the appropriate normalization factor. andn,= u/(ux+A,). Solving forn,, we obtain
A corresponding role is played by the secdtabss term on

We now study the evolution of the degree distribution of
the GN model. The rate equations [ (t) are

the right-hand side of Eq1). Note that the overall amplitude K 1
in A is irrelevant, since it appears in both the numerator and nk:ﬁ 1+ Lad 3)
denominator of Eq(1), and can be chosen arbitrarily. The Ai=1 A
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To complete the solution, we need to find the amplitude 2
Combining the definitionu==x;-,A;n; and Eq.(3), we ob-
tain the implicit relation 18 r
o) k 1
)72 1.6 1
1+—| =1 4
kgl lel Aj) @ = tal

Thus the amplitudex always depends on the entire attach-
ment kernel. On the other hand, we shall show that the de-
gree distribution exhibits a robust behavior which depends
only on gross features of the attachment kernel, as lorfg as 0 02 04 06 08 1

grows more slowlythan linearly. The case wherg, is Y

asymptotically linear is perhaps the most intriguing, as the

degree distribution has a power-law behavior whose expo- FIG. 3. The amplitudey in M (t)=ut, vsy.

nent depends on microscopic details of the dependenég of

on k. When A, grows more quicklythan linearly, a drasti- those used to solve the network with the linear kernel. We
cally different gelationlike behavior arises. It is again worth can then apply perturbation theory to find the respective lim-
noting that these three regimes of kinetic behavior also aris#ting behaviors ofu(y) for y close to 0 or 1,

in the solutions to the rate equations for additive polymeriza-

1.2 ¢

tion processes, with the different regimes arising when the p=1+Boy+O(¥%),

attachment exponent is smaller than, larger than, or equal 5

to 1[41]. We now describe these three cases separately. r=2-B1(1-y)+0(1~-y)9),
1. Sublinear kernels with

Consider sublinear kernels which aasymptotically ho- “ Inj
mogeneousthat is,A~k?, with 0<y<1. Substituting this Bo= E E]—=O.5078 ce,
asymptotics into Eq(3), writing the product as the exponen- =1
tial of a sum, converting the sum to an integral, and perform-

oo

) A . Ini
ing this integral, we obtain 81242 . J. —oam
) L S (+D(+2)
kimr=2+"7 1
K %exp —u| ————1 |, —<y<1,
l{ M( 1-vy ” 277 2. Linear kernels

1 Now considerasymptoticallylinear attachment kernels,
Ny~ k(M271/2)qu_2M\/R]’ ==, A~k as k—x. As already mentioned, we can always
2 choose the amplitude in the asymptotic relation to be equal
1y 2 12y to 1, as attachm_ent kernel_s which differ by a m_ultiplicfative
K Vex;{ B k N Mo k } 1 E factor give identical behaviors. For an asymptotically linear
| k1= y 2 1-2y/ 2 kernel, expanding the product in E@) and following step
(5) by step the approach that led to E§) now gives the power-
law asymptotic behavior

etc. The pattern given in Eq5) continuesad infinitum

Whenevery decreases belowr, with m a positive integer, ng~k™" with v=1+pu. (6)

an additional term in the exponential arises from the now

relevant contribution of the next-higher-order term in the ex-An important feature of this result is that the exponeran

pansion of the product in Eq3). be tuned tanyvalue larger than 2. This lower bound imme-
To complete the solution, we require the amplityde  diately follows from the fact that the sumu=2;A;n;

We have been unable to find an explicit expressiongfor ~~2;jn; must converge, and this, in turn, requires that

even if the attachment kernel is strictly homogeneoks, Mmust be larger than 2.

=k?, as this requires solving E¢4). However, this relation As an explicit example, consider the attachment kernel

can be easily evaluated numerically, and it shows that) A=k for k=2, while Ay=a is an arbitrary positive num-

varies smoothly between 1 and 2 asncreases from 0 to 1 ber. Now it is convenient to treat separatély and A for

(Fig. 3. These two limits correspond to the known limiting k=2 in Eq. (4) to recast it as

behaviors forMy and M . ok
More detailed results can be obtained for the limiting —A 2 1—[

solvable cases of =const andA,=k. In these limits,u K ) =2

=1 and 2, respectively, and the corresponding degree distri-

butions are given by,=2"% and by Eq(2). The former can  The right-hand side of E47) can be simply expressed as the

be easily obtained by exactly following the same steps asatio of Euler gamma functions, to yield

ﬁfl

1-|—Aj

@)
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T(1+k) 3. Superlinear kernels
'“:akgz F(2+’“)I’(1+,u+ k) (®) For superlinear homogeneous attachment kerrfgls
=k?, with y>1, we now show that a “winner take all”
This sum can be evaluated by employing the iderfd®] phenomenon arises, namely, there emerges a single dominant
“gel” node which is linked to almost every other node. A

“ T(a+k) I'(a+2) particularly singular behavior occurs far>2, where there
E , (9)  is a nonzero probability that the initial node is connected to
k=2 T'(b+k) (b—a— Dr(b+1) everyother node of the network.

Let us first determine the probability that the initial node
so that Eq.(8) reduces tou(u—1)=2e, with solution  connects to all other nodes. It is convenient to consider a

#=(1+y1+8a)/2. Thus the exponent=1+u is discrete time version of the GN in which one node is intro-
duced at each elemental step, which always links to the ini-
3+V1+8a tial node. AfterN steps, the probability that the new node
= (10 will link to the initial node isN”/(N+N?). The probability

that this connectivity pattern continues indefinitely is

Furthermore, following the steps that lead to E8), the
degree distribution for the GN with the attachment kernel

m g

Ai=a andA =k for k=2 is 1+Nl y (13
M pa T'(2+u)I'(K) Clearly, P=0 wheny=<2 but?>0 wheny>2. Thus, for
n, = v k= . (11 : o o
uta wta T(d+u+k) v>2 there is a nonzero probability that the initial node con-
nects to all other nodes.
Note that for 6<a<1, the exponent lies in the range<a To determine the behavior for genenal 1, we first need

<3; in particular,y=2+2a—4a?+--- as a—0. When the asymptotic time dependence Mf,. To this end, it is

a=1, we recover the connectively distribution of E@).  useful to consider the discretized version of the master equa-

For «>1, we haver>3; in particular,y— 2« asa—». tions Eq.(1), where the time is limited to integer values.
The GN is also solvable wheA,=k+w. This shifted Then Ny(t)=0 wheneverk>t, and the rate equation for

linear kernel can be motivated naturally by explicitly keep-Nk(k) immediately leads to

ing track of the directionality of the links. In particular, the

node degree for an undirected graph generalizes to the in- K= (k=1)"Ng-1(k—1) N2 1—[ 7
degree and out-degree for a directed graph. These are just the (k)= M, (k—1) 2(2) M 1/(J)
number of incoming and outgoing links at a node, respec- (14)

tively. Thus the node degrdein a directed graph is the sum
of the in-degrea and out-degre¢ The most general linear From this, and the obvious fact thilf(k) must be less than
attachment kernel for a directed graph is therefore of theunity, it follows thatM ,(t) cannot grow more slowly than
form Ajj=ai+Dbj. The GN corresponds to the case wheret?. On the other handyl (t) cannot grow faster that?, as
the out-degree of any node is equal to 1; thesl andk  follows from the estimate
=i+1. Hence the general linear attachment kernel reduces
to Ayk=a(k—1)+b. Since, as mentioned above, the overall _ y -1 1
scale factor in the kernel is irrelevant, we can rewAieas Mv(t)_gl K'Ni(t)=<t k; KN (D) ="M (1).
the shifted linear kerneh,=k+w, with w=—1+b/a, so (15)
that it can vary over the range 1<w< o,

We can now easily determine the degree distribution forThusM =t”. In fact, the amplitude of” is unity as we will
the shifted linear attachment kernel. First we note théd derive self-consistently after solving for tiNg's.
=3AN;=M (1) +WMq(t). Then using the basic results ~ We now useM ,~t”, with y>1, in the rate equations to
A=ut, Mg=t andM,=2t, we haveu=2+w and thusy  solve recursively for eaciN,. Starting with the equation
=3+w, according to Eq(6). Furthermore, from E¢3) we  N,=1—-N,/M,,, we see that the second term on the right-
easily determine the entire degree distribution to be hand side is subdominant. Thus, by neglecting this term, we

obtain N;=t. Similarly, N,=(N;—2"N,)/M,~N;3/M,

_ (12) gives N,~t2~?/(2— ). Continuing this same Ime of rea—
(1+w) I'(k+3+2w) soning for each successive rate equation gives the leading

o . ) ) behavior ofN,,
In a similar vein, we can solve the GN with an arbitrary

piecewise linear attachment kernel. In all these cases, the N(t)=J t* kD7 for k=1, (16)
exponentr can be tuned to any value larger than 2, and for

sufficiently large degrea, can be expressed as the ratio of with Jk—l'lJ 1] YI[1+j(1—v)]. This pattern of behavior for
gamma functions, i.e., the degree distribution is a purelyN, continues as long as its expondat (k—1)y remains
(discrete algebraic function. positive, ork<+vy/(y—1). The full temporal behavior of

t t

r 2 'k
e (24w) F(34— w) (k+w)
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Ny (t) may be determined straightforwardly by keeping thethe distribution of citations are insufficient to provide a clear

next correction terms in the rate equations. For exampleest for the existence of a power law. Further, for a GN

Ny (D) =t—t>"Y(2—y)+---. model with a linear attachment kernel, the degree distribu-
For k>v/(y—1), eachN, has a finite limiting value in tion depends on additional details of this kernel, and can

the long-time limit. Since the total number of connections isachieveany value greater than 2. In short, it is difficult to

equal to 2, andt of them are associated witH,, the re- relate the GN model to citation data based on the form of the

mainingt links must all connect to a single node which has distribution alone.

connections(up to corrections which grow no faster than  Another interesting aspect of the citation distribution

sublinearly with time. Consequently the amplitude d, is  which can be compared with the GN model is the nature of

equal to unity, as argued above. highly cited publications. Within the GN model, the degree
Therefore for superlinear kernels, the GN undergoes anf the most popular nodé,,,,, may be determined by the

infinite sequence of connectivity transitions as a function ofextreme statistics criterioEk>kmaxNk= 1, which states that

y. Fory>2 all but a finite number of nodes are linked to the there is one node in the network whose degree lies in the

“gel” node, which has the rest of the links of the network. range k,.y,%). This criterion gives

This is the “winner take all” situation. For 3R y<2, the

number of nodes with two links grows @& ”, while the (IntyV=7 - o<y<1

number of nodes with more than two_links is again finite. For Ko tU(r-1) asymptotically linear  (17)
4/3<y<3/2, the number of nodes with three links grows as
t3-27 and the number with more than three is finite. Gener- t, r=>1.

ally for (m+1)/m<y<m/(m-—1), the number of nodes
with more thanm links is finite, while N,~t<~ =17 for k
=m. Logarithmic corrections also arise at the transition
points.

We now compare this prediction with the data about the
most-cited paper. To make a correspondence between cita-
tions and Eq(17), we identify the total number of publica-
tions in each dataset with The most cited paper had 8904
citations in the ISI data set and 2026 citations in the PRD
B. Relation to citation data data set. These results are consistent with the first line of Eq.

Let us now attempt to relate some of our predictions from(17) when y~0.86 and 0.7 respectively, and also with the

the GN model to the distribution of citations in recent scien—s_eCOnd line for~2.5 and 2.3, respectively. Thus an analy-

tific publications[11,12. The GN model represents an ex- > Of_ th_e mog,t-c_ned_ paper does not cleanly indicate whether
treme idealization of the citation process in which each pubEhe citation d|str|but!on_|§ a power law or a stretched expo-
lication cites only a single paper and the probability of citing nential. These amtygumes |nd|_cate that some c.)f Fhe ISSues
a paper depends only on its current number of citations, anH“".lt shc_JuId be clarified to' provide a clear description of ci-
not on its intrinsic quality or any other realistic features. [AIONS In terms of a growing network model.
Thus we anticipate that the connection between the model
and the data will be, at best, tenuous. C. GNR model

The data that we discuss is based(@n783339 papers  \ye now solve the GNR model within the rate equation
with 6 716 198 citationgprovided by the Institute of Scien- framework. According to the basic processes in the model

tific Information (ISI)], and (b) 24 296 papers with 351872 (£ig. 2) the degree distributiol,(t) evolves by the rate
citations from all issues of Physical Review (BPRD) from equations

1975 to 1994(provided by thespiRESdatabasge[42]. A cur-

sory visual inspection of this data suggests that the number  dN, —r r

of publications withk citations decays as a stretched expo- g ~ %™ M_O[Nkfl_ Ni ]+ M—O[(k— 2)Ny—1
nential function ok (see, e.g., Fig. 1 of Ref12]). However,

an analysis based on presenting the data in a Zipf plot, in —(k=1)N]. (18

conjunction with scaling, is suggestive of a power-law form
for the citation distributionk™”, with v~3 (Fig. 2 of Ref.  For the redirection probability=0, the first three terms on
[12]). This ambiguity between a stretched exponential andhe right-hand side of Eq18) are the same as in the GN.
power-law form for the citation distribution corresponds to The last two terms account for the changeNjp due to the
the situation where the predictions of the GN itself are diffi-redirection process. To understand their origin, consider the
cult to discern numerically. gain term due to redirection. Since the initial node is chosen
If we consider a GN with an attachment kerdghk?” for ~ uniformly, if redirection does occur, the probability that a
y=1, then a plot ofn, in Eq. (5 versusk, for 1<k node withk—1 pre-existing links receives the new “redi-
<1000, changes relatively slowly asvaries in the range rected” link is proportional tk—2, the number of preexist-
(0.9,1). If one attempts to fit this data to a power law, thening incoming links. A similar argument applies for the
an exponent value somewhat larger than 3 gives a reasonabedirection-driven loss term. Sind&,=0 is tacitly assumed,
fit to the data. It is only ay— 1 from below, however, that Eq. (18) applies for allk=1.
the factors in the exponential of E¢p) conspire to give a By combining the terms in Eq(18), the rate equation
pure power-law form fon, . Because of the relatively small reduces to that of the original GN witly,=(k—1)r+1—r
change inn, as y varies, the relatively incomplete data on =r[k—1+(1—r)/r]. By scaling out the factor, we then
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reduceA, to the form of the shifted linear kernkh-w, with 1

w=[(1-r)/r]—1=(1kr)—2. Thus we can merely tran-

scribe our results about the GN with the shifted linear kernel 08 | k=l

to determine the degree distribution for the GNR model.

Amusingly, forr=1/2, the GNR model is identical to the = 0.6 1

GN with the purely linear kernel. In general, the degree dis- £

tribution in the R model is a power law with exponent © 04

=1+1/r, which can be tuned to any value larger than 2. 2

This exponent value was first obtained in Simon’s original 02 5
paper[32], but in a rather different context, by employing an 10
approach which is similar to ours. 0 0 02 04 06 08 1

IV. AGE DISTRIBUTION o
FIG. 4. Age-dependent degree distribution for the GN for the

In addition to the distribution of degree, we studfien  |inear attachment kernel. Low-degree nodes tend to be relatively
connections occur in the GN. This provides a deeper undefoung, while high-degree nodes are old. The inset shows detail for
standing of the overall development of growing networks.a/t=0.98.
Naively, we expect that older nodes will be better connected,
and this can be quantified by categorizing nodes both by dfy
their degree and age. It should be emphasized that the GN —2x g = (k=D =k (22)
doesnot have explicit aging, in which the connection prob-
ability depends on the age of the target node; this feature iye have omitted the delta function term, since it merely
treated in Ref[26]. Instead, we merely extend the categori- yroyides the boundary conditian(t,a=0)= 8, O
zation of the nodes to include their age as well as their de-

gree. fi(1)=6yq. (23

A. Linear connection kernel .'.I'he solution tp this boundary-.value problem may bg sim-
plified by assuming an exponential solutifr= ® X~ *: this
Let c,(t,a) be the average number of nodes of @e s consistent with the boundary condition, provided that
which havek—1 incoming links at t!met. Here ag@means  ¢(1)=1 ande(1)=0. The above ansatz reduces the infi-
that the nqde was introduced at t'|rne a. That is, we are pjte set of rate equatiof&q. (22)] into two elementary dif-
now resolving each node both by its degree and its age. The,ential equations for(x) and ®(x), whose solutions are
resulting joint age-degree distribution is simply related to the(p(x)=1— JX and®(x) = yX. In terms of the original vari-

degree distribution throughi(t) = fodac(t.a). The joint  pies ofa andt, the joint age-degree distribution is then
distribution evolves according to

Ax_1Ck—1—AC a al !
_ A1l A k+5k15(a)- (19 Ck(t,a):\/l—f[l— \/1—;} . (24

Ck A(D)

a d

ot sa

Thus the degree distribution for nodes of fixed age decays
ponentially with degree, with a characteristic degree which
iverges agk)~(1—a/t) Y2 for a—t. As expected, young

The second term on the left accounts for the aging of node%x
and the probability of connecting to a given node again dezj

pends only on its degree and not on its age. n . .
= : odes(those witha/t—0) typically have a small degree,
We start by considering the linear attachment kerkgl while old nodes have a large degrég. 4). It is the slow

=k, and focus on the long-time asymptotic behavior. Then e : .
we can disregard the initial condition and writa(t) decay of the degree distribution for old nodes which ulti

o . ; . mately leads to a power-law degree distribution when this
=M, (t)=2t. This transforms Eqg(19) into joint age-degree distribution is integrated over all ages to
(k—1)c,_;— ke, give Ny(t).

= +dad@). (20

J J

J— + J—

Jt  oda
'I_'he homogeneous fo_rm_ of this equation implies tha_lt a solu- Let us now consider a GN with a connection kernel which
tion should be self-similar. Thus we seek a solution as &rows either linearly or more slowly witk Ansatz(21) still

function of thesingle variablea/t rather than two separate is valid, so that the distributiof, evolves according to
variables. Thus we write

B. General connection kernels

dfy
. a X g~ Ao A (25)
c(t,a)="f (x) with le—?. (21
We now solve Eq(25), subject to the boundary condition
This turns the partial differential equati@®0) into the ordi-  (23), and withu determined from Eq4). Let us first replace
nary differential equation x by X=— u"tInx, which reduces the left-hand side of Eq.
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(25) to df,/dX. Applying a Laplace transformf(s) We can derive explicit age-degree distributions for other

= [ZdXe 5% (X), F.(s) obeys a simple algebraic recursion attachment kernels. For example, for the constant attachment

formula whosl,(e sélult(ion i kernel, A,=1, the joint age-degree distribution is the Pois-
son distribution,

Sfl
L&

Xk—l

=

(26) fo(X)= X, (32)

Apart from the notation, this is identical to E¢B), and or, in terms of the original variables andt,
can be analyzed accordingly. In particular, we can determine

fi(s) for various asymptotically linear attachment kernels. eta)=| 1- a||in(1—a/t)|** 33
For example, for the shifted linear attachment kergt k K t (k=21)!
+w, we find
The characteristic degree now diverges relatively slowily,
R F(1+w+s) I'(k+w) (k)~—In(1—a/t) asa—t, than for asymptotically linear at-
fi(s)= F(1+w) T(krlfwss) (27)  tachment kernels. On the other hand, the average age ap-

proaches the maximal ageat a much faster rate, &

To invert this Laplace transform, it is useful to rewrite this = t[1—(2/3)"], ask approaches its maximal value. .
expression as a sum of rational function?sk(s) Fo_r cases where we have been unable to obtain an explicit
_ K, - ) . . solution, the Laplace transform method still allows us to ex-
=2<i<kFi(j+w+s)"*.  This then gives f.(X) . :

J L (WX i tract the asymptotics. For example, for asymptotically homo-
=2<j<kFje "%, with geneous attachment kernefg— k” ask— o, Eq.(26) gives
— 1) I (k4 w) the largek asymptoticsfk(s)~k‘7exq—sk1‘7/(1— v)] [see
Fk= _( ) : ( . (28)  Eq. (9)]. (For concreteness, here we consider the range 1/2
P T()HIN(k=j+1)I (1+w) < y<1.) Inverting this Laplace transform yields

We then re-express this in terms of the original variable

x=e~(2*WX_ Hencef,(x) can be rewritten as the sum kf fr(X)~k™76
power laws,fy(x) =3, <j < Fix0 W/ Substituting the

explicit expressior(28) into this sum reduces the joint age- In particular, the age of nodes withlinks is peaked about

k1=
X—1 7). (34)

degree distribution to the valuea, which satisfies
I'(k+w) ay Ki—>
— (1+w)/(2+wW)r1 _ yU(2+w)1k—1 K1 _
fir(X) —F(k)I‘(1+W)X [1—x 1 n 1—ex Ml—y ) (35
(29

This again shows that old nodes are much better connected.
This expression shows that old nodes have a broad distri-

bution of degrees up to a characteristic degrée V. NODE DEGREE CORRELATIONS
=(1—a/t)" Y™ One can also verify that the average age '
a, of nodes of degreg, defined asak=N;1fE,ack(t,a)da We now demonstrate that correlations between the de-
=tn, 31— x)f(x)dx, is grees of connected nodes spontaneously develop as the net-
work grows. One motivation for focusing on these correla-
tions is that recently random graph models with arbitrary
ﬂzl_ L(5+3w)T'(k+3+2w) 1— const.. (300  degree distributions have been investigaié@—-45. While
t I'(3+2w)I'(k+5+3w) k2w the degree distribution can be chosen arbitrarily in these

models, the degrees of connected nodes wareorrelated

Thus nodes with a very large degree necessarily have an ageis lack of correlation suggests that such random graphs
which approaches that of the entire network. may have limited applicability to growing network systems.

Finally, the joint age-degree distribution simplifies in the  For the GN, a useful characterization of node degree cor-
limit k—o and x—0, with the scaling variable relations isNy(t), the number of nodes of total degrie
£=kx@*W kept finite. In this case, we can rewrite E89)  which attach to an ancestor node of total degreor ex-
in the scaling form ample, in the network of Fig. 1, there aNg=6 nodes of
degree 1, withN;,=N3=Ns=2. There are alsd\,=2
nodes of degree 2, witN,s=2, andN;=1 node of degree
3, with N3s=1. The correlation function is not defined for
the initial node. GenerallyN,, is defined fork=1 and|
The scaling variable can also be written &sk/(k), and =2, and obeys the sum ruld,==N,,. A gratifying fea-
thus Eg.(31) clearly shows that old nodes have a broadture of the rate equation approach is that the correlation func-
distribution of degrees: £ k= (k). tion Ny, can be understood in a natural and simple fashion.

§l+W

flX)=K"'F(§), F(&= mexﬁ—f)- (31)
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A. Linear connection kernel
Ay +4)

For the GN with the linear attachment kerrg=k, the M= (1+y)* -
joint distribution N, (t) evolves according to

(42)

For fixed largek, the distributionn,, has a single maximum
aty, =(1/33—5)/2=0.372. Thus a node whose degless
large is typically linked to another node whose degree is also
large; the typical degree of the ancestor is 37% of the degree
of the daughter node. In the complementary case of a fixed

The first two terms on the right-hand side account for thedegr.eel for the ancestor node, the distributiop, reaches a
change inN,, due to the addition of a link onto a node of maximurm wherk=1, |.e.,_the daughter noc_ie IS u_suaIIy dan-
degreek—1 (gain or k (losg, while the second set of terms gling. From Eq.(41), we find that this configuration occurs
gives the change Ny, due to the addition of a link onto the with a probability
ancestor node. Finally, the last term accounts for the gain in

dNy
Ml?=[(k_1)Nk_1’|_ka|]+[(| _1)Nk,|—1_|Nk|]

+(I=1)Ni-16iq. (36)

Ny, due to the addition on the new node. Ny = 20-1)(1+6) ) (43)
Asymptotically, M;—2t and N—tny, and we use I(+1)A+2)(1+3)
these hypotheses to reduce E@) to the time-independent ] o
recursion relations Finally, when bothk and| are large and their ratio is also
very different from 1, the limiting behaviors of,, are
(k+1+2)ng=(k=21)n_; + (1 =1)ny, -
“ A kimt 16(1/k%)  whenl <k
=D 18. @7 Ma—1 4/(k2%)  whenl>k. (44)

This can be reduced to a constant-coefficient inhomogeneous

recursion refation by the substitution This last result demonstrates the correlations in the network
T(KT(1) most cleanly. If there were no correlations, thgm, would

- be proportional to KI) 3.
T (kT T+3) v 8

. B. General connection kernels
to yield

In general, correlations between the degrees of neighbor-

My =My_ g+ My —1+4(1+2) 5. (39  ing connected nodes exist for any attachment kernel. The

analysis of these correlations for an arbitrary kernel is te-

By solving Eq.(39) for the first fewk, one can grasp the dious, and we merely outline some of the primary results in
pattern of dependence dnandl and thereby infer the gen- the relatively simple cases of the shifted linear and constant

eral solution attachment kernels.
In the former case, we follow the same approach as the
N F(k+1) L 10 I'(k+1-1) (40 linear kernel, to reduce the rate equation for the correlation
KT T(k+2)L(1-1) ~T(k+1)T(1-1)" function to recursion relations of a similar form to H87),
viz.
This solution can also be obtained in a more systematic man-
ner by the generating function methgsee below for the (k+1+2+3w)n = (k+w—=1)n,_q;+ (1 +w—1)
shifted linear kernel Combining Eqs(38) and (40), we fi-
na”y obtain X [nk,l—1+ r]I—lékl]- (45)
4(1-1) Here n, is determined from Eq(12). In analogy with Eq.
= 38), th bstituti
M= kT D) (kD) (K14 1) (K 1+ 2) (38), the substitution
. 12(1-1) m nkI:F(k+w)F(I+w) mn 46
K(k+ 1= 1) (k+ ) (K+ T+ 1) (k+1+2) I'(k+1+3+3w)

The important feature of this result is that the joint distri- reduces Eqsi45) to
bution does not factorize, that ig,#nn,. This confirms
our earlier assertion that correlations between the degrees of _ I'(1+3+3w)

g M =My g+ My -1+ W55, (47)

connected nodes form spontaneously. This is arguably the : : r'i+2+2w)
most important distinction between classical random graphs
— where node degrees are uncorrelated—and the GN.  whereW=(2+w)I"(3+2w)/[T'(1+w)]?. We solve recur-

While the solution of Eq(41) is unwieldy, it greatly sim-  sion (47) by the generating function methd0]. Multiply-
plifies in the scaling regimek—o andl—oo, with y=1/k ing Eq. (47) by xy', and summing over ak=1/=2, we
kept finite. The scaled form of the solution is find that the generating function
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o0 o

in-component

Mixy)= 2 2, mxty (48) 4
is given by : s
out-component = ,’\/
Wxy & I(j+5+3w) . T ey Ny
= J "‘
MOV =15y 2 Traraw Y 49
ExpandingM(x,y), we obtain FIG. 5. In component and out component of node

12 I'k+1=2—)I'(j+5+3w) Now a straightforward analysis shows that for latgethe

mkl:WjZo F(k)F(I _ 1_J)F(J +4+ 2W) . (50) maximum is attained dt=k/2.
The form of the joint distributiom,, remains relatively
Equations(46) and (50) constitute an exact solution for the complex even in the _sc_:almg reginkd —, with the scaling
correlation function of the GN with the shifted linear attach- variabley=1I/k kept finite. We determine the scaled form of
ment kernel. the solution(55) by applying Stirling’s formula and the iden-
When the parametev is an integer, we can reducg, to  tity T'(x+X\)/T'(x) —=x" asx—z=. Fory<2, we find
a rational function. In the general case, the exact solution
g Vi+y? ey

also simplifies in several extreme limits. Whée>1, the . 1 e (56)
dominant contribution ta, is provided by the first term in Kl lomk 2—Y ’

the sum in Eq.(50). Assuming, additionally, that=>1 and

repeatedly using the asymptotic relatidi(N+n)/I'(N)  whereY=ylny—(y+1)In[(y+1)/3]. Fory>2, it is prefer-

—N" asN—=, we ultimately find able to use the solution in the form of E@4). After some
algebra, we can verify that the dominant contribution equals
F(5+3w) ., o 27(=1 that is,independenof k [46].
”klzwmI k , k>I>1. (8] Finally, the limiting behavior of the correlation function is

—(k+H1=2) =21 _ _
In the complementary case b&k>1, all the terms in the . 3 [K™5/(=2)1]  whenl<k
sum of Eq.(50) are important. However, we can simplify ~ Ma—2 "X} 2-(-2) whenl>k.
this sum by employing the above asymptotics for the ratio of 5
gamma functions, and then replacing the sum by an easily (57)
computable integral. We find Thus correlations are strong even for the random attachment
kernel, and the qualitative behavior is similar to that of the
- —21-2-w ’
N=WI'(2+w)k™ ' (52 jinear attachment kernel.

When the attachment kernel is uniform, correlations be-
tween the degrees of a node and its ancestor still develop. To
see how this comes about quantitatively, we again follow the The degree of a node is an important but local network
same steps as those which led to Ej), and find that the  characteristic, and we now seek to quantify more global fea-
joint distributionn; now satisfies the recursion relation tures of the network. One such characteristic is the partition-

_ —(-1) ing of the network into arin componenaind anout compo-
3N =N—1) F N -1+ 2 Sk1- (53 nentwith respect to any nodeFig. 5).
The in component to node is the set of all nodes from
hich nodex can be reached by following a path of directed
links. Similarly, the out component of nodeis the set of
nodes which can be reached by following the path directed
E,_ (54)  links which emanate from node For the GN model, the out
3 component is just a single path, while in more realistic net-
works both the in and out components will be branched. In
To appreciate the qualitative behavior of the joint distribu-the context of citations, the in component is the set of all
tion ny, it is again useful to fix one variable and vary the publications which refer tx, either directly or through in-
other. For fixed, Eq. (54) shows than,, has a maximum at termediate reference lists unkilis reached. The out compo-
k=1. The magnitude of this maximum ig,=2"("1 nent is the set of cited publications generated by iteratively
—37 (=1, To analyze the behavior whehis fixed, it is  following the reference ligs) of x and its ancestors.
convenient to transform E@54) into

VI. LARGE-SCALE PROPERTIES

This recursion relation can again be solved by the generatin&,
function technique, to give

1 1 ora-1+i)

1
21 L& T(I-I(+1)

Ny =

A. In-component size distribution
B 1 E -1+
T A T DTG +1)

_1|,. (55) The size distribution of the in component can be easily
= 3 obtained by the rate equation formalism for the GN with a
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uniform attachment kernel and also for the GNR. Given the (1) g=0
equivalence between the latter and the GN with a shifted

linear kernel, the latter case is also soluble. We start by con- G @ ®
sidering the GN with the uniform attachment kernel. In this

case, the numbdr(t) of in components witls nodes satis- @( g 5

fies the rate equation

1

2

di (s—1)I —s] FIG. 6. Genealogy of the growing random network of Fig. 1.
ZSs_ s 1 S <1 (59 The indices indicate when a node is introduced, while the ancestor
dt t determines where a new node is positioned.

To understand this equation, first consider the loss term. For = . .
an in component of size there ares nodes in which the redirection occurs. These two processes give a loss ratg for

attachment of a new node causes this component to increadlich is proportional tgs—1+(1-r)]ls. Solving for the
in size by 1. This gives a loss rate for which is propor- in-component distribution in this process now yieldst)

tional tos. If there is more than one in component of size — ts, With

they must be disjoint, so that the total loss rate ffgris

simply slg. A similar argument applies for the gain term. ) 1-r

Finally, the overall factor of " converts these rates to nor- 'S:m' (61)

malized probabilities. Curiously, E¢58) is almost identical
to the rate equations for the degree distribution of a GN wit
a linear attachment kernel, except that the prefactor is equ
to t ! rather than to (8 1.

From Eq.(58) we can determine all moments of the in- [47]

component siz(_a distributioff(t) = 2> 15" (1) The zeroth Since the GNR model is identical to the GN with the

moment obeysZ,=1, whose solution iy(t) =Zo(0)+t.  shifted linear attachment kern&|=k-+[(1/r)— 2], Eq.(61)
This is obvious, since the total number of in components islso applies to the in-component distribution for the GN with
equal to the total number of nodes. The first moment obeyshifted linear attachment kernels. For example, the in-
7,=1+1,17,, whose asymptotic solution & (t)~tint. We  component distribution for the linear kernel is simply
shall see that this logarithmic factor is an outcome of the;=2/(4s>—1). Since the samésxs™ 2 decay holds for a
asymptotic power law fol with the tail decaying as™ 2. GN with both constant and linear attachment kernels, we

To solve forl(t), we note that it again grows linearly in conjecture that the in-component distribution exhibits a uni-
time. Thus we substitute the anshgft) =ti into Eq.(58) to  versals™2 decay for ararbitrary attachment kernel, as long
obtaini;=1/2 andis=i,_,(s—1)/(s+1), which immedi- as it does not grow faster than linearly with node degree.
ately leads to

emarkably, the asymptotic power ldw-s™?2 holds for any
s striking that this apparently universal behavior has
also recently been observed in measurements of the Internet

1 B. Out-component size distribution

(59 The out component from each node reveals basic insights

into the “genealogy” of the growing network in an ex-
For this s 2 decay, the momentg, diverge whenn=1. tremely simple fashion. For example, it allows us to estimate
However, the size of the largest in componegp,=t, pro-  the diameter of the network, an important characteristic
vides an upper threshold in the computation of the momentsvhich has been measured for the web greg$49 and for
For exampleZ;~X sl (t)=tInt. It is intriguing that the  social networkd23].
algebraic in-component distribution coexists with an expo- For this characterization, we begin by reorganizing the
nential in-degree distributiom,=2"X. GN into a genealogical tree according to a procedure which
Similarly, we can determingy(t) for the GNR model. In is suggested by the growth process itself. Generagierd
this case, the numbdr(t) of in-components withs nodes contains a single “seed” node. The nodes which attach to
satisfies the seed node form generatige 1, and generally the nodes
which attach to nodes in generatian form generation
dls_[s=2+(1-0lls-1—[s=1+(2—-1)]ls 60 9+ independendf when the attachment actually occurs.
dt t Thus the position of a node in the genealogical tree depends
. only on the position of the ancestor node amut on when
for s=2, andl;=1—(1-r)l,/t. This rate equation can be the node is introduced. In this respect, the GN genealogical
understood in a similar manner as E§8). Consider the loss tree differs from typical genealogies, where each new gen-
term for an in component of size There are two possibili- eration is born into a progressively later position in the ge-
ties to consider(i) If the apex of the in component is ini- nealogical tree. For example, the network of Fig. 1 has five
tially chosen, then the new node will attach to this apex withnodes in the first generation and four nodes in the second
probability 1—r (i.e., attach with no redirection(ii) If any  generation, leading to the genealogical tree of Fig. 6. The
other of thes— 1 nodes of the in component is chosen, thesizes of all generations grow continuously, except for gen-
new node will surely attach to the in component even iferationg=0 which always consists of a single node.

is:s(s+1)'
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Once we understand the genealogical structure of the GNyrobability L,. However, by the redirection process, this
we simultaneously establish the out-component distributionnew node actually attaches to a node in generagierd, and
Indeed, the numbeD®g of out components witls nodes is  thereby joins generatiog.
equal toLs_ 4, the number of nodes in generatissri 1 in the To solve Eq(66), we again use=In(1+t), and apply the
genealogical tree. We therefore computgt), the size of Laplace transform technique. After some elementary steps,
generationg at timet. We start with the simplest situation we obtain
when the attachment rate is uniform. In this casg(t) in-
creases when a new node attaches to a node in the previous
generation. This occurs with rate; /Mg, whereM(t)
=1+t is the total number of nodes. Because of the simplic-
ity of the corresponding rate equations, we use an exact eXrom this solution, we find that for a fixethrge time, the
pression forM, rather than the asymptotic expressiblyy  generation size grows witg wheng<(1—r)r, reaches a
~t, as was done in solving for the in component. Thus Wemaximum valuel ,~t/\27(1—r)int atg=(1—r), and
write then decreases whe (1—r)r. Eventually the generation
size becomes of order 1 wher= G7, whereG is the root of

)x]°
e

T 1—
Lg+l(T)=JOdX—[( g: (67)

%: Lg‘l_ (62) equationGIn[G/(1—r)]=G+r. The diameter of the network
dt 1+t is thenD~2G .
These two solvable cases again suggest that the genealogy
Solving these equations gives of the GN is robust, as long as the attachment kernel does not
. grow faster than linearly with node degree. For superlinear
T kernels, however, the genealogy changes drastically. When
Lo(7)= g’ where 7=In(1+1). 63 the attachment exponent exceeds 2, there will be only a few

generations overall, and one generatgh will contain all

We therefore conclude that for a fixéidrge time, the gen-  but a finite number of nodes. For such a network, the gel
eration size grows W|t|’g when g<r, reaches a maximum node will reside in generaUOQ* —1. When the attachment

size which is equal to exponent lies in the range<ly<2, a single generation will
also contain almost alt nodes. However, the number of
¢ nodes which reside in other generations is of otde? and
Lo —— (64) thus grows as well. Additionally, the number of nonempty
v2mint generations grows indefinitely with the total number of
nodes.

wheng= 7, and then decreases and eventually becomes of The above results can be reformulated in terms of the
order 1 wheng=er. The distributionL, quickly decays out-component distribution. In particular, for a GN with a
when g exceeds the cutoff valuer. At time t, the genea- uniform attachment kernel, the numbéx, of out compo-
logical tree therefore contains approximatelygenerations. nents withs nodes is equal to

Hence the diametdd of the network is approximatelye,
or

-1

Os(7)= (STj—ly where 7=In(1+t1). (68)

D~2elnN, (65)
Similar results apply for the linear attachment kernel, sug-
whereN=1+t is the total number of nodes. Thus the diam- gesting that the out-component distribution is robust as long
eter of anevolvingGN exhibits the samdl dependence as a as the attachment kernel does not grow faster than linearly

static random graph4]. with node degree.
We can also find the generation size distribution for
shifted linear attachment kernels. It is again simpler to derive VII. DISCUSSION AND CONCLUSIONS

the rate equations in the framework of the GNR model, and )
then transcribe the results to the shifted linear kernel. For the !N this paper, we have analyzed the structure of the grow-
GNR model, the rate equation for the generation size distri"d Network(GN) model and shown that many of its prop-
bution is erties can be easily determined within a rate equation ap-
proach. We have found that the GN has a power-law node
dly (1—r)Lgy_ +rL degree distributioM,(t) ~tk™” for asymptotically linear at-
9_ g-1 9 (66)  tachment kernels, with an exponentvhich is always larger
than 2. By tuning parameters of the model in a reasonable
. way, it is easy to obtain a node degree distribution which is
forg>1, andL,=(1+t) " Y[1+rL,]. The first term in Eq. in quantitative agreement with available data for the web
(66) has the same origin as in a GN without redirection, andyraph[14—16,19-21,4P
the second term accounts for the changd. indue to the A remarkable feature of this network is the spontaneous
redirection. In the latter case, the new node provisionallydevelopment of correlations between connected nodes. These
attaches to a node in generatigirthis occurs with a relative correlations provide a much more sensitive characterization

dt 1+t
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of the structure of growing networks than the extensivelyThus for the linear attachment kernel, the average node de-
studied degree distribution. These correlations are also crigree does not affect the exponenbf the degree distribu-
cial features which distinguish the GN from classical randomtion. However, for other solvable examples, the feature of
graphs. Thus testing for the presence of correlations betweeattaching the new node to more than one preexisting node
node degrees in large evolving networks may provide crucialeads to different degree distributions. For example, for the
insights to help determine the underlying mechanism of theishifted linear kernel we find

growth.
We have also studied two specific large-scale properties —— I'(k+w) for k=p, (71
of the network, namely, the size distributions of the in and I'(k+3+w+w/p)
out components with respect to a given site. The in-
component distribution exhibits a robust? power-law be- p+w |t
havior, wheres is the component size, as long as the attach- np=|1+ p2p+w (72)

ment probability does not grow faster than linearly with node
degree. The out-component distribution reveals the basic gérhis gives the asymptotic behaving~k~ G Thus the
nealogical feature that the number of “generations” in theexponent of the degree distributialependson the average
network grows logarithmically with the total number of node degree, withv=3+w/p.
nodes, again for attachment kernels which do not grow faster The multiple linking construction also reduces the number
than linearly in node degree. of nodes with in-degree zero. For example, for a GN with a
The qualitative agreement between the degree distribushifted linear attachment kernel, the fraction of such nodes is
tions of real evolving networks, such as the web graph, aneth,=(2+w)/(3+2w), which is always larger than 1/2.
the GN is reassuring given that the model ignores many imHowever, for the multiple linking construction, the fraction
portant features of real networks. Nevertheless, a number @f nodes with in-degree zero is reduced to the valygiven
characteristics of real growing networks are difficult to treatin Eq. (72). If we usep=7 to reproduce the correct average
in the framework of the GN model. One important such ex-node degree of the web graph, the fraction of nodes with
ample is the out-degree distribution. Within the GN modelin-degree zero always exceeds 1/8, which, however, appar-
the out-degree of each node is 1 by construction. In contrasgntly disagrees with web dafd9]. Thus, while multiple at-
for real growing networks the out-degree distribution has aachment does reduce the number of poorly connected nodes,
power-law form[49]. Additionally, the average in- and out- this reduction is still insufficient to account for web-graph
degrees at each node are generally larger than 1; for the wefata. However, it is clear that the multiple linking construc-
graph, for example(i)=(j)~7.5[49]. tion has the potential to provide a better description of cita-
There are several natural ways to extend the GN model téion data.
generate an average out-degree which is greater than 1. A Another shortcoming of multiple attachment is that it can-
simple construction is to link every new node to more thannot dynamically generate a nontrivial out-degree distribution.
one earlier node, as already discussed in [R&]. Let us  However, we can extend the GN model by allowing for cre-
consider a network which is built by attaching every newation of links between existing nodgs0]. This simple con-
node to exactlyp earlier nodes. For the linear attachmentstruction allows us to generate nontrivial out-degree distribu-
kernel, the degree distributioN,(t), which is now defined tions which closely match web-graph data. An even more

only for k=p, evolves according to challenging direction is to describe the global topological
dN structure of growing networks. The GN model leads to a

k_ P single-component tree graph, while the web graph has nu-
—=—[(k— 11— + Sy - . ’ .

dt My (k= DNi1=kN] + 0 (69) merous disconnected components. A deeper understanding

of the web graph may provide valuable insights to help de-

Clearly, the average in-degreig and out-degre¢j) of each  yelop algorithms for web crawling, searching, and commu-
node in this network are equal By applying the basic pjty discovery.

approach of Sec. Ill to this rate equation, we find that the
degree distribution again asymptotically approaches a stable
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