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Organization of growing random networks

P. L. Krapivsky and S. Redner
Center for BioDynamics, Center for Polymer Studies, and Department of Physics, Boston University, Boston, Massachusetts

~Received 7 November 2000; published 24 May 2001!

The organizational development of growing random networks is investigated. These growing networks are
built by adding nodes successively, and linking each to an earlier node of degreek with an attachment
probability Ak . WhenAk grows more slowly than linearly withk, the number of nodes withk links, Nk(t),
decays faster than a power law ink, while for Ak growing faster than linearly ink, a single node emerges which
connects to nearly all other nodes. WhenAk is asymptotically linear,Nk(t);tk2n, with n dependent on details
of the attachment probability, but in the range 2,n,`. The combined age and degree distribution of nodes
shows that old nodes typically have a large degree. There is also a significant correlation in the degrees of
neighboring nodes, so that nodes of similar degree are more likely to be connected. The size distributions of the
in and out components of the network with respect to a given node—namely, its ‘‘descendants’’ and
‘‘ancestors’’—are also determined. The in component exhibits a robusts22 power-law tail, wheres is the
component size. The out component has a typical size of order lnt, and it provides basic insights into the
genealogy of the network.

DOI: 10.1103/PhysRevE.63.066123 PACS number~s!: 02.50.Cw, 05.40.2a, 05.50.1q, 87.18.Sn
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I. INTRODUCTION

Networks of many interacting units play an important ro
in epidemiology, ecology, gene regulation, neural networ
and many other fields@1–3#. In many studies of these ne
works, the number of nodes is considered to be fixed, and
presence of a link between two nodes is treated as a ran
event independent of the other links. These assumptions
naturally to random graph models@4,5#. While these models
have a rich behavior and considerable utility, they are
necessarily appropriate for describinggrowing networks,
where the addition of nodes and links may depend on lo
features of the network where the growth event is tak
place.

Typical examples of such growing networks inclu
transportation or electrical distribution systems, whe
growth occurs in response to population-driven deman
Two currently appealing examples are the distribution of s
entific citations and the structure of the worldwide web. F
both these examples there are now considerable data a
able, in spite of the very rapid growth of these systems
the former case, one may consider papers to be nodes
graph and citations to be links. The structure of the result
‘‘citation graph’’ was originally studied by Lotka in 1926
@6#, and then by many others@7–13#. The basic feature o
this citation distribution is that it appears to have a relativ
steep power-law tail; thus most papers are minimally ci
while highly cited papers are rare.

Similarly, in the web graph, much structural data we
recently obtained@14–21# which suggest that the number o
nodes withk links has a power-law tail, with an expone
that is somewhat larger than 2. This power-law tail ag
corresponds to the basic fact that most nodes of the
graph are unimportant, while a relatively small number
nodes garner a large fraction of ‘‘hits.’’ Due to the qualit
tive similarities between the citation and web graphs,
sights developed in the field of bibliometrics@9# have been
applied to help understand the structure of the web@22#.
1063-651X/2001/63~6!/066123~14!/$20.00 63 0661
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Because of the dynamic nature of the citation and w
graphs, it is not surprising that their topologies at any fix
time are very different from classical random graphs. In d
tinction to the power-law degree distributions of the citati
and web graphs, random graphs have a Poisson node de
distribution. Here ‘‘node degree’’ is defined as the number
links at a node. To overcome the shortcomings of rand
graphs in describing the dynamic natures of these syste
both ‘‘small-world’’ networks@23,24# and growing random
network models@20,25–28# were recently introduced. The
former are aimed at understanding the relatively small dia
eter of large graphs of socially interacting units, while t
latter seek to understand the growth dynamics.

In this paper, we provide a comprehensive quantitat
description of a simplegrowing network~GN! model. Our
results are based on an analysis of the rate equations fo
densities of nodes of a given degree. This approach b
many similarities to the rate equations for the kinetics
aggregation. The rate equations for the evolution of grow
networks are relatively simple, and the results that eme
are comprehensive. Thus it appears that the rate equa
method is better suited for probing the structure of grow
random networks compared to the classical approaches
analyzing random graphs, such as probabilistic@4# or gener-
ating function @5# techniques. The rate equation approa
also has the advantage that it can be adapted to other e
ing graph systems, including networks with the addition a
deletion of nodes and links, as well as networks with li
rewiring.

We will specifically investigate two types of models:~a! a
GN in which nodes are added one at a time, and a link
established with a pre-existing node according to an atta
ment probabilityAk which depends only on the degree of th
target node~Fig. 1!; and~b! a GN with redirection~GNR!, in
which the newly created link can be redirected to the ‘‘a
cestor’’ node of the original target node. An important fe
ture of these models is that the links aredirected, and the
resulting graphs have a simple treelike topology. The m
©2001 The American Physical Society23-1



s

a
he
t.

rib

ar

-

gr

ly
.

r o
.
n

ic

o
o

e
de
t

iz
c
rk
-
i

an

a

her
eb
inks.
he

in-
the
e
al-
nel

nce
ree

e

e
l in

een
at
ere
s

ch-

l. In

ob-

ior
ch-
rs
tics
tion

n,
ur in
he

n-
ing
ple
a

-
e

g
li
h
n
t
6

P. L. KRAPIVSKY AND S. REDNER PHYSICAL REVIEW E63 066123
vation for the GNR model is that this redirection proce
roughly mimics how we might~lazily! construct the refer-
ences to this paper. In addition to papers that we peruse
cite directly, we are also likely to incorporate some of t
references within these papers as part of our reference lis
related ‘‘copying’’ process has also been invoked to desc
the organization of the web@15#.

One of our primary results is that for asymptotically line
attachment kernels,Ak;k as k→`, the degree distribution
of the GN has a power-law formNk(t);tk2n, with n tun-
able in the range 2,n,`. By choosing the control param
eters of our model in a plausible manner, it is then easy
reproduce quantitative observations about the node de
distribution of the web graph.

In Sec. II, we define the GN and GNR models precise
and then determine their node degree distributions in Sec
by the rate equation approach. Different distributions arise
the GN model which depend on the asymptotic behavio
the attachment probability as a function of node degree
Sec. IV, we investigate the joint age-degree distribution, a
find ~not surprisingly! that ‘‘old’’ nodes are typically more
highly connected. In Sec. V, we study the correlations wh
develop between the degrees of connected nodes as the
work grows. In Sec. VI, we study a more global measure
the network, namely, the size distributions of the in comp
nent and the out component. With respect to a given nodx,
the in component is the set of nodes which can reach nox
via a directed path of links. Conversely, the out componen
the set nodes which can be reached from nodex via a di-
rected path. The former exhibits a robust power-law s
distribution which appears to be independent of the atta
ment probability. The latter distribution predicts a netwo
‘‘diameter’’ which grows as lnt, and also provides basic in
sights into the genealogy of the network. We conclude
Sec. VII.

II. MODELS

A. Growing network

In the GN, we introduce a new node at each time step,
link it to one of the earlier nodes in the network~Fig. 1!. This
leads to a network which has a topology of a~directed! tree
graph. In terms of citations, we may interpret the nodes

FIG. 1. Schematic illustration of the evolution of the growin
random network. Nodes are added sequentially, and a single
joins the new node to an earlier node. In this example, node 1
degree 5, node 2 has degree 3, nodes 4 and 6 have degree 2, a
the remaining nodes have degree 1. Also note that node 1 is
‘‘ancestor’’ of node 6, while node 10 is the descendant of node
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publications, and the directed link from one paper to anot
as a citation to the earlier publication. In terms of the w
graph, nodes are web pages and directed links are hyperl
We will refer to the node to which the link is directed as t
ancestorof the current node.

As the network grows, a degree distributionNk(t), de-
fined as the average number of nodes withk links (k21
incoming and 1 outgoing!, builds up. The initial node is
unique, as it does not have an outgoing link. The basic
gredient which determines the structure of the network is
attachment kernel Ak , defined as the probability that th
newly introduced node links to an existing node which
ready hask links. On general grounds, this attachment ker
should be a nondecreasing function ofk, and natural sce-
narios are attachment kernels with a power-law depende
on k. For the linear kernel, the GN reduces to the scale f
model introduced by Baraba´si and Albert@20# and further
investigated in Refs.@25–27#.

The general homogeneous modelAk5kg, with g>0, was
investigated in Ref.@28#, where it was found that the degre
distribution Nk(t) crucially depends on the value ofg. For
g,1, the linking probability grows weakly with the nod
popularity, andNk(t) decreases as a stretched exponentia
k for any t. The complementary case ofg.1 leads to a
phenomenon akin to gelation@29# in which a single ‘‘gel’’
node links to nearly every other node. Forg.2, this phe-
nomenon is so extreme that the number of links betw
other nodes is finite in an infinite graph. We shall show th
these results also apply for the more general situation wh
Ak;kg as k→`, in addition to the strictly homogeneou
situation whereAk5kg.

The borderline case of an asymptotically linear atta
ment kernelAk;k, is particularly intriguing as it leads to
Nk;k2n, with the exponentn tunable toany value larger
than 2 depending on finer details of the attachment kerne
particular, the strictly linear kernel,Ak5k leads ton53.
However, by changing the value of a single attachment pr
ability, for exampleA15a andAk5k for k.2, any value of
n.2 is possible. This sensitivity of the asymptotic behav
to microscopic details indicates that the case of the atta
ment indexg51 is marginal. A related phenomenon occu
in constant-kernel aggregation, where the asymptotic kine
is sensitively dependent on the actual values of the reac
rate @30,31#.

B. Growing network with redirection „GNR…

The GN is built by simultaneous node and link additio
and disregards other elemental processes which can occ
the development of large networks. In the context of t
web, these include node and link deletion~for out-of-date
websites!, link rewiring, the tendency of a new node to co
nect to nearby nodes, and the copying of links from exist
nodes to new nodes. The GNR model incorporates a sim
form of link rewiring into the GN model. At each time step
new noden is added, and an earlier nodex is selecteduni-
formly as a possible ‘‘target’’ for attachment. With a prob
ability 12r , the link fromn to x is created; in this case, th
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ORGANIZATION OF GROWING RANDOM NETWORKS PHYSICAL REVIEW E63 066123
evolution is the same as in the GN. However, with proba
ity r, the link is redirectedto the ancestor nodey of nodex
~Fig. 2!.

A model of this spirit was recently mentioned in the co
text of web development@15#. A related model was also
proposed long ago by Simon@32,33# to describe the word
frequencies of English text. The Simon model gives a pow
law frequency distribution whose exponent is tunable
manner which closely mirrors the behavior in the GN
model. The Simon model was also recently applied to
plain power-law distributions in the frequency of fami
names@34#.

While at first sight the GNR model appears complicat
we shall see that its characteristics can be obtained
simple fashion. Another very helpful and surprising prope
of the GNR model with a uniform initial attachment pro
ability is that it is equivalent to a GN with a shifted linea
attachment kernel andno redirection. We shall exploit this
equivalence extensively in the following. Nevertheless,
consider the GNR model separately, as in many cases
rate equations for the GNR model with auniformattachment
kernel is simpler to appreciate than the rate equations f
GN with a shifted linear attachment kernel.

III. DEGREE DISTRIBUTION

A. GN model

We now study the evolution of the degree distribution
the GN model. The rate equations forNk(t) are

dNk

dt
5A21@Ak21Nk212AkNk#1dk1 . ~1!

The first term on the right-hand side of Eq.~1! accounts for
the process in which a node withk21 links is connected to
the new node, leading to a gain in the number of nodes w
k links. This occurs with a probabilityAk21 /A, where
A(t)5( j >1AjNj (t) is the appropriate normalization facto
A corresponding role is played by the second~loss! term on
the right-hand side of Eq.~1!. Note that the overall amplitude
in Ak is irrelevant, since it appears in both the numerator a
denominator of Eq.~1!, and can be chosen arbitrarily. Th

FIG. 2. Illustration of the basic processes in the GNR mod
The new node~solid! selects a target nodex. With probability 1
2r a link is established to this target node~dashed arrow!, while
with probability r the link is established with the ancestor ofx
~thick solid arrow!.
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last term on the right-hand side of Eq.~1! accounts for the
continuous introduction of new nodes with no incomin
links. We also setN0[0, so that Eq.~1! applies for allk
>1.

At a fundamental level, it is worth noting that Eq.~1!
describes the symbolic reaction@k#→@k11#. Many other
reactions, such as the Becker-Do¨ring theory of nucleation
@35#, additive polymerization@36#, hydrolysis@37#, catalysis,
and submonolayer epitaxial growth@38#, fit into this scheme.
However, there is one important difference in that we co
sider strictly a single connected cluster~the growing net-
work!, while in the context of aggregation-like processe
one generally deals with a collection of clusters. The eff
of having more than one cluster in the framework of growi
networks is currently under investigation@39#.

We start by solving the equations for the low-order m
ments of the degree distribution, which are defined
Mn(t)5( j >1 j nNj (t). Summing Eqs.~1! over allk gives the
rate equation for the total number of nodes,Ṁ051, whose
solution is M0(t)5M0(0)1t. The first moment~the total
number of link endpoints! obeys Ṁ152, which gives
M1(t)5M1(0)12t. The first two moments are thereforein-
dependentof the attachment kernelAk , while higher mo-
ments and the degree distribution itself do depend on
kernelAk .

To develop an appreciation for the types of behavior t
can occur, consider the linear kernelAk5k, for which A(t)
coincides withM1(t). In this case, we can solve Eq.~1! for
an arbitrary initial condition. However, since the long-tim
behavior is most interesting, we limit ourselves to t
asymptotic regime (t→`) where the initial condition is ir-
relevant. Using thereforeM152t, we solve Eq.~1! and ob-
tain N152t/3, N25t/6, etc., which implies that eachNk
grows linearly with time. Accordingly, we substituteNk(t)
5tnk in Eq. ~1! to yield the simple recursion relatio
nk5nk21(k21)/(k12). Solving fornk gives

nk5
4

k~k11!~k12!
. ~2!

In the context of discrete functions defined on the posit
integers, this distribution is algebraic over the entire range
k. Indeed, as explained in Ref.@40#, the proper analog of the
continuouspower-law function f (x)5x2l is the discrete
function f k5G(k)/G(k1l), whereG is the Euler gamma
function. Rewriting Eq.~2! asnk54G(k)/G(k13), we see
that nk is indeed algebraic over the entire rangek>1.

Returning to more general attachment kernels, let us
sume that the degree distribution andA(t) both grow linearly
with time. We anticipate that this hypothesis will hold fo
attachment kernels which do not grow faster than linea
with k. SubstitutingNk(t)5tnk and A(t)5mt into Eq. ~1!,
we obtain the recursion relationnk5nk21Ak21 /(m1Ak)
andn15m/(m1A1). Solving fornk , we obtain

nk5
m

Ak
)
j 51

k S 11
m

Aj
D 21

. ~3!

l.
3-3
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To complete the solution, we need to find the amplitudem.
Combining the definitionm5( j >1Ajnj and Eq.~3!, we ob-
tain the implicit relation

(
k51

`

)
j 51

k S 11
m

Aj
D 21

51. ~4!

Thus the amplitudem always depends on the entire attac
ment kernel. On the other hand, we shall show that the
gree distribution exhibits a robust behavior which depe
only on gross features of the attachment kernel, as long aAk
grows more slowly than linearly. The case whereAk is
asymptotically linear is perhaps the most intriguing, as
degree distribution has a power-law behavior whose ex
nent depends on microscopic details of the dependence oAk
on k. When Ak grows more quicklythan linearly, a drasti-
cally different gelationlike behavior arises. It is again wor
noting that these three regimes of kinetic behavior also a
in the solutions to the rate equations for additive polymeri
tion processes, with the different regimes arising when
attachment exponentg is smaller than, larger than, or equ
to 1 @41#. We now describe these three cases separately

1. Sublinear kernels

Consider sublinear kernels which areasymptotically ho-
mogeneous, that is,Ak;kg, with 0,g,1. Substituting this
asymptotics into Eq.~3!, writing the product as the exponen
tial of a sum, converting the sum to an integral, and perfo
ing this integral, we obtain

nk;5
k2gexpF2mS k12g2212g

12g D G , 1

2
,g,1,

k~m221/2!exp@22mAk#, g5
1

2
,

k2gexpF2m
k12g

12g
1

m2

2

k122g

122gG , 1

3
,g,

1

2
,

~5!

etc. The pattern given in Eq.~5! continuesad infinitum:
Wheneverg decreases below 1/m, with m a positive integer,
an additional term in the exponential arises from the n
relevant contribution of the next-higher-order term in the e
pansion of the product in Eq.~3!.

To complete the solution, we require the amplitudem.
We have been unable to find an explicit expression form,
even if the attachment kernel is strictly homogeneous,Ak
5kg, as this requires solving Eq.~4!. However, this relation
can be easily evaluated numerically, and it shows thatm(g)
varies smoothly between 1 and 2 asg increases from 0 to 1
~Fig. 3!. These two limits correspond to the known limitin
behaviors forM0 andM1.

More detailed results can be obtained for the limiti
solvable cases ofAk5const andAk5k. In these limits,m
51 and 2, respectively, and the corresponding degree di
butions are given bynk522k and by Eq.~2!. The former can
be easily obtained by exactly following the same steps
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those used to solve the network with the linear kernel. W
can then apply perturbation theory to find the respective l
iting behaviors ofm(g) for g close to 0 or 1,

m511B0g1O~g2!,

m522B1~12g!1O„~12g!2
…,

with

B05(
j 51

`
lnj

2 j 50.5078 . . . ,

B154(
j 51

`
lnj

~ j 11!~ j 12!
52.407 . . . .

2. Linear kernels

Now considerasymptoticallylinear attachment kernels
Ak;k as k→`. As already mentioned, we can alway
choose the amplitude in the asymptotic relation to be eq
to 1, as attachment kernels which differ by a multiplicati
factor give identical behaviors. For an asymptotically line
kernel, expanding the product in Eq.~3! and following step
by step the approach that led to Eq.~5! now gives the power-
law asymptotic behavior

nk;k2n with n511m. ~6!

An important feature of this result is that the exponentn can
be tuned toanyvalue larger than 2. This lower bound imme
diately follows from the fact that the summ5( jAjnj
;( j jn j must converge, and this, in turn, requires thatn
must be larger than 2.

As an explicit example, consider the attachment ker
Ak5k for k>2, while A1[a is an arbitrary positive num-
ber. Now it is convenient to treat separatelyA1 and Ak for
k>2 in Eq. ~4! to recast it as

m5A1(
k52

`

)
j 52

k S 11
m

Aj
D 21

. ~7!

The right-hand side of Eq.~7! can be simply expressed as th
ratio of Euler gamma functions, to yield

FIG. 3. The amplitude,m in Mg(t)5mt, vs g.
3-4
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m5a(
k52

`

G~21m!
G~11k!

G~11m1k!
. ~8!

This sum can be evaluated by employing the identity@40#

(
k52

`
G~a1k!

G~b1k!
5

G~a12!

~b2a21!G~b11!
, ~9!

so that Eq.~8! reduces tom(m21)52a, with solution
m5(11A118a)/2. Thus the exponentn511m is

n5
31A118a

2
. ~10!

Furthermore, following the steps that lead to Eq.~3!, the
degree distribution for the GN with the attachment ker
A15a andAk5k for k>2 is

n15
m

m1a
, nk5

ma

m1a

G~21m!G~k!

G~11m1k!
. ~11!

Note that for 0,a,1, the exponent lies in the range 2,n
,3; in particular,n5212a24a21••• as a→0. When
a51, we recover the connectively distribution of Eq.~2!.
For a.1, we haven.3; in particular,n→A2a asa→`.

The GN is also solvable whenAk5k1w. This shifted
linear kernel can be motivated naturally by explicitly kee
ing track of the directionality of the links. In particular, th
node degree for an undirected graph generalizes to the
degree and out-degree for a directed graph. These are jus
number of incoming and outgoing links at a node, resp
tively. Thus the node degreek in a directed graph is the sum
of the in-degreei and out-degreej. The most general linea
attachment kernel for a directed graph is therefore of
form Ai j 5ai1b j . The GN corresponds to the case whe
the out-degree of any node is equal to 1; thusj 51 andk
5 i 11. Hence the general linear attachment kernel redu
to Ak5a(k21)1b. Since, as mentioned above, the over
scale factor in the kernel is irrelevant, we can rewriteAk as
the shifted linear kernelAk5k1w, with w5211b/a, so
that it can vary over the range21,w,`.

We can now easily determine the degree distribution
the shifted linear attachment kernel. First we note thatA(t)
5( jAjNj5M1(t)1wM0(t). Then using the basic result
A5mt, M05t and M152t, we havem521w and thusn
531w, according to Eq.~6!. Furthermore, from Eq.~3! we
easily determine the entire degree distribution to be

nk5~21w!
G~312w!

G~11w!

G~k1w!

G~k1312w!
. ~12!

In a similar vein, we can solve the GN with an arbitra
piecewise linear attachment kernel. In all these cases,
exponentn can be tuned to any value larger than 2, and
sufficiently large degreenk can be expressed as the ratio
gamma functions, i.e., the degree distribution is a pur
~discrete! algebraic function.
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3. Superlinear kernels

For superlinear homogeneous attachment kernelsAk
5kg, with g.1, we now show that a ‘‘winner take all’’
phenomenon arises, namely, there emerges a single dom
‘‘gel’’ node which is linked to almost every other node.
particularly singular behavior occurs forg.2, where there
is a nonzero probability that the initial node is connected
everyother node of the network.

Let us first determine the probability that the initial nod
connects to all other nodes. It is convenient to conside
discrete time version of the GN in which one node is intr
duced at each elemental step, which always links to the
tial node. AfterN steps, the probability that the new nod
will link to the initial node isNg/(N1Ng). The probability
that this connectivity pattern continues indefinitely is

P5 )
N51

`
1

11N12g
. ~13!

Clearly, P50 wheng<2 but P.0 wheng.2. Thus, for
g.2 there is a nonzero probability that the initial node co
nects to all other nodes.

To determine the behavior for generalg.1, we first need
the asymptotic time dependence ofMg . To this end, it is
useful to consider the discretized version of the master eq
tions Eq.~1!, where the timet is limited to integer values.
Then Nk(t)50 wheneverk.t, and the rate equation fo
Nk(k) immediately leads to

Nk~k!5
~k21!gNk21~k21!

Mg~k21!
5N2~2!)

j 52

k21
j g

Mg~ j !
.

~14!

From this, and the obvious fact thatNk(k) must be less than
unity, it follows that Mg(t) cannot grow more slowly than
tg. On the other hand,Mg(t) cannot grow faster thantg, as
follows from the estimate

Mg~ t !5 (
k51

t

kgNk~ t !<tg21(
k51

t

kNk~ t !5tg21M1~ t !.

~15!

ThusMg}tg. In fact, the amplitude oftg is unity as we will
derive self-consistently after solving for theNk’s.

We now useMg;tg, with g.1, in the rate equations to
solve recursively for eachNk . Starting with the equation
Ṅ1512N1 /Mg , we see that the second term on the rig
hand side is subdominant. Thus, by neglecting this term,
obtain N15t. Similarly, Ṅ25(N122gN2)/Mg;N1 /Mg
gives N2;t22g/(22g). Continuing this same line of rea
soning for each successive rate equation gives the lea
behavior ofNk ,

Nk~ t !5Jkt
k2(k21)g for k>1, ~16!

with Jk5) j 51
k21 j g/@11 j (12g)#. This pattern of behavior for

Nk continues as long as its exponentk2(k21)g remains
positive, or k,g/(g21). The full temporal behavior of
3-5
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Nk(t) may be determined straightforwardly by keeping t
next correction terms in the rate equations. For exam
N1(t)5t2t22g/(22g)1•••.

For k.g/(g21), eachNk has a finite limiting value in
the long-time limit. Since the total number of connections
equal to 2t, and t of them are associated withN1, the re-
mainingt links must all connect to a single node which hat
connections~up to corrections which grow no faster tha
sublinearly with time!. Consequently the amplitude ofMg is
equal to unity, as argued above.

Therefore for superlinear kernels, the GN undergoes
infinite sequence of connectivity transitions as a function
g. Forg.2 all but a finite number of nodes are linked to t
‘‘gel’’ node, which has the rest of the links of the networ
This is the ‘‘winner take all’’ situation. For 3/2,g,2, the
number of nodes with two links grows ast22g, while the
number of nodes with more than two links is again finite. F
4/3,g,3/2, the number of nodes with three links grows
t322g and the number with more than three is finite. Gen
ally for (m11)/m,g,m/(m21), the number of nodes
with more thanm links is finite, whileNk;tk2(k21)g for k
<m. Logarithmic corrections also arise at the transiti
points.

B. Relation to citation data

Let us now attempt to relate some of our predictions fr
the GN model to the distribution of citations in recent scie
tific publications@11,12#. The GN model represents an e
treme idealization of the citation process in which each p
lication cites only a single paper and the probability of citi
a paper depends only on its current number of citations,
not on its intrinsic quality or any other realistic feature
Thus we anticipate that the connection between the mo
and the data will be, at best, tenuous.

The data that we discuss is based on~a! 783 339 papers
with 6 716 198 citations@provided by the Institute of Scien
tific Information ~ISI!#, and ~b! 24 296 papers with 351 87
citations from all issues of Physical Review D~PRD! from
1975 to 1994~provided by theSPIRESdatabase! @42#. A cur-
sory visual inspection of this data suggests that the num
of publications withk citations decays as a stretched exp
nential function ofk ~see, e.g., Fig. 1 of Ref.@12#!. However,
an analysis based on presenting the data in a Zipf plot
conjunction with scaling, is suggestive of a power-law fo
for the citation distribution,k2n, with n'3 ~Fig. 2 of Ref.
@12#!. This ambiguity between a stretched exponential a
power-law form for the citation distribution corresponds
the situation where the predictions of the GN itself are di
cult to discern numerically.

If we consider a GN with an attachment kernelAk;kg for
g&1, then a plot ofnk in Eq. ~5! versus k, for 1<k
<1000, changes relatively slowly asg varies in the range
(0.9,1). If one attempts to fit this data to a power law, th
an exponent value somewhat larger than 3 gives a reason
fit to the data. It is only asg→1 from below, however, tha
the factors in the exponential of Eq.~5! conspire to give a
pure power-law form fornk . Because of the relatively sma
change innk as g varies, the relatively incomplete data o
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the distribution of citations are insufficient to provide a cle
test for the existence of a power law. Further, for a G
model with a linear attachment kernel, the degree distri
tion depends on additional details of this kernel, and c
achieveany value greater than 2. In short, it is difficult t
relate the GN model to citation data based on the form of
distribution alone.

Another interesting aspect of the citation distributio
which can be compared with the GN model is the nature
highly cited publications. Within the GN model, the degr
of the most popular node,kmax, may be determined by the
extreme statistics criterion(k.kmax

Nk51, which states that
there is one node in the network whose degree lies in
range (kmax,`). This criterion gives

kmax;H ~ lnt !1/(12g), 0<g,1

t1/(n21) asymptotically linear

t, g.1.

~17!

We now compare this prediction with the data about
most-cited paper. To make a correspondence between
tions and Eq.~17!, we identify the total number of publica
tions in each dataset witht. The most cited paper had 890
citations in the ISI data set and 2026 citations in the P
data set. These results are consistent with the first line of
~17! when g'0.86 and 0.7 respectively, and also with th
second line forn'2.5 and 2.3, respectively. Thus an ana
sis of the most-cited paper does not cleanly indicate whe
the citation distribution is a power law or a stretched exp
nential. These ambiguities indicate that some of the iss
that should be clarified to provide a clear description of
tations in terms of a growing network model.

C. GNR model

We now solve the GNR model within the rate equati
framework. According to the basic processes in the mo
~Fig. 2!, the degree distributionNk(t) evolves by the rate
equations

dNk

dt
5dk11

12r

M0
@Nk212Nk#1

r

M0
@~k22!Nk21

2~k21!Nk#. ~18!

For the redirection probabilityr 50, the first three terms on
the right-hand side of Eq.~18! are the same as in the GN
The last two terms account for the change inNk due to the
redirection process. To understand their origin, consider
gain term due to redirection. Since the initial node is chos
uniformly, if redirection does occur, the probability that
node with k21 pre-existing links receives the new ‘‘red
rected’’ link is proportional tok22, the number of preexist
ing incoming links. A similar argument applies for th
redirection-driven loss term. SinceN0[0 is tacitly assumed,
Eq. ~18! applies for allk>1.

By combining the terms in Eq.~18!, the rate equation
reduces to that of the original GN withAk5(k21)r 112r
5r @k211(12r )/r #. By scaling out the factorr, we then
3-6
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reduceAk to the form of the shifted linear kernelk1w, with
w5@(12r )/r #215(1/r )22. Thus we can merely tran
scribe our results about the GN with the shifted linear ker
to determine the degree distribution for the GNR mod
Amusingly, for r 51/2, the GNR model is identical to th
GN with the purely linear kernel. In general, the degree d
tribution in the R model is a power law with exponentn
5111/r , which can be tuned to any value larger than
This exponent value was first obtained in Simon’s origin
paper@32#, but in a rather different context, by employing a
approach which is similar to ours.

IV. AGE DISTRIBUTION

In addition to the distribution of degree, we studywhen
connections occur in the GN. This provides a deeper un
standing of the overall development of growing networ
Naively, we expect that older nodes will be better connec
and this can be quantified by categorizing nodes both
their degree and age. It should be emphasized that the
doesnot have explicit aging, in which the connection pro
ability depends on the age of the target node; this featur
treated in Ref.@26#. Instead, we merely extend the catego
zation of the nodes to include their age as well as their
gree.

A. Linear connection kernel

Let ck(t,a) be the average number of nodes of agea
which havek21 incoming links at timet. Here agea means
that the node was introduced at timet2a. That is, we are
now resolving each node both by its degree and its age.
resulting joint age-degree distribution is simply related to
degree distribution throughNk(t)5*0

t dack(t,a). The joint
distribution evolves according to

S ]

]t
1

]

]aD ck5
Ak21ck212Akck

A~ t !
1dk1d~a!. ~19!

The second term on the left accounts for the aging of nod
and the probability of connecting to a given node again
pends only on its degree and not on its age.

We start by considering the linear attachment kernelAk
5k, and focus on the long-time asymptotic behavior. Th
we can disregard the initial condition and writeA(t)
[M1(t)52t. This transforms Eqs.~19! into

S ]

]t
1

]

]aD ck5
~k21!ck212kck

2t
1dk1d~a!. ~20!

The homogeneous form of this equation implies that a so
tion should be self-similar. Thus we seek a solution a
function of thesingle variablea/t rather than two separat
variables. Thus we write

ck~ t,a!5 f k~x! with x512
a

t
. ~21!

This turns the partial differential equation~20! into the ordi-
nary differential equation
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22x
d fk

dx
5~k21! f k212k fk . ~22!

We have omitted the delta function term, since it mere
provides the boundary conditionck(t,a50)5dk1, or

f k~1!5dk1 . ~23!

The solution to this boundary-value problem may be si
plified by assuming an exponential solutionf k5Fwk21; this
is consistent with the boundary condition, provided th
F(1)51 andw(1)50. The above ansatz reduces the in
nite set of rate equations@Eq. ~22!# into two elementary dif-
ferential equations forw(x) andF(x), whose solutions are
w(x)512Ax andF(x)5Ax. In terms of the original vari-
ables ofa and t, the joint age-degree distribution is then

ck~ t,a!5A12
a

t H 12A12
a

t J
k21

. ~24!

Thus the degree distribution for nodes of fixed age dec
exponentially with degree, with a characteristic degree wh
diverges aŝk&;(12a/t)21/2 for a→t. As expected, young
nodes~those witha/t→0) typically have a small degree
while old nodes have a large degree~Fig. 4!. It is the slow
decay of the degree distribution for old nodes which u
mately leads to a power-law degree distribution when t
joint age-degree distribution is integrated over all ages
give Nk(t).

B. General connection kernels

Let us now consider a GN with a connection kernel whi
grows either linearly or more slowly withk. Ansatz~21! still
is valid, so that the distributionf k evolves according to

2mx
d fk

dx
5Ak21f k212Akf k . ~25!

We now solve Eq.~25!, subject to the boundary conditio
~23!, and withm determined from Eq.~4!. Let us first replace
x by X52m21lnx, which reduces the left-hand side of E

FIG. 4. Age-dependent degree distribution for the GN for t
linear attachment kernel. Low-degree nodes tend to be relati
young, while high-degree nodes are old. The inset shows detai
a/t>0.98.
3-7
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~25! to d fk /dX. Applying a Laplace transform,f̂ k(s)
5*0

`dXe2sXf k(X), f̂ k(s) obeys a simple algebraic recursio
formula whose solution is

f̂ k~s!5
1

Ak
)
j 51

k S 11
s

Aj
D 21

. ~26!

Apart from the notation, this is identical to Eq.~3!, and
can be analyzed accordingly. In particular, we can determ
f̂ k(s) for various asymptotically linear attachment kerne
For example, for the shifted linear attachment kernelAk5k
1w, we find

f̂ k~s!5
G~11w1s!

G~11w!

G~k1w!

G~k111w1s!
. ~27!

To invert this Laplace transform, it is useful to rewrite th
expression as a sum of rational functionsf̂ k(s)
5(1< j <kF j

k( j 1w1s)21. This then gives f k(X)

5(1< j <kF j
ke2( j 1w)X, with

F j
k5

~21! j 21G~k1w!

G~ j !G~k2 j 11!G~11w!
. ~28!

We then re-express this in terms of the original varia
x5e2(21w)X. Hencef k(x) can be rewritten as the sum ofk
power laws,f k(x)5(1< j <kF j

kx( j 1w)/(21w). Substituting the
explicit expression~28! into this sum reduces the joint age
degree distribution to

f k~x!5
G~k1w!

G~k!G~11w!
x(11w)/(21w)@12x1/(21w)#k21.

~29!

This expression shows that old nodes have a broad di
bution of degrees up to a characteristic degree^k&
5(12a/t)21/(21w). One can also verify that the average a
ak of nodes of degreek, defined asak5Nk

21*0
t ack(t,a)da

5tnk
21*0

1(12x) f k(x)dx, is

ak

t
512

G~513w!G~k1312w!

G~312w!G~k1513w!
;12

const.

k21w
. ~30!

Thus nodes with a very large degree necessarily have an
which approaches that of the entire network.

Finally, the joint age-degree distribution simplifies in th
limit k→` and x→0, with the scaling variable
j5kx1/(21w) kept finite. In this case, we can rewrite Eq.~29!
in the scaling form

f k~x!5k21F~j!, F~j!5
j11w

G~11w!
exp~2j!. ~31!

The scaling variable can also be written asj5k/^k&, and
thus Eq. ~31! clearly shows that old nodes have a bro
distribution of degrees: 1<k&^k&.
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We can derive explicit age-degree distributions for oth
attachment kernels. For example, for the constant attachm
kernel,Ak51, the joint age-degree distribution is the Po
son distribution,

f k~X!5
Xk21

~k21!!
e2X, ~32!

or, in terms of the original variablesa and t,

ck~ t,a!5S 12
a

t D u ln~12a/t !uk21

~k21!!
. ~33!

The characteristic degree now diverges relatively slowly,viz.
^k&;2 ln(12a/t) asa→t, than for asymptotically linear at
tachment kernels. On the other hand, the average age
proaches the maximal aget at a much faster rate, asak
5t@12(2/3)k#, ask approaches its maximal value.

For cases where we have been unable to obtain an exp
solution, the Laplace transform method still allows us to e
tract the asymptotics. For example, for asymptotically hom
geneous attachment kernels,Ak→kg ask→`, Eq.~26! gives
the large-k asymptoticsf̂ k(s);k2gexp@2sk12g/(12g)# @see
Eq. ~5!#. ~For concreteness, here we consider the range
,g,1.! Inverting this Laplace transform yields

f k~X!;k2gdS X2
k12g

12g D . ~34!

In particular, the age of nodes withk links is peaked abou
the valueak which satisfies

ak

t
.12expS 2m

k12g

12g D . ~35!

This again shows that old nodes are much better connec

V. NODE DEGREE CORRELATIONS

We now demonstrate that correlations between the
grees of connected nodes spontaneously develop as the
work grows. One motivation for focusing on these corre
tions is that recently random graph models with arbitra
degree distributions have been investigated@43–45#. While
the degree distribution can be chosen arbitrarily in th
models, the degrees of connected nodes areuncorrelated.
This lack of correlation suggests that such random gra
may have limited applicability to growing network system

For the GN, a useful characterization of node degree c
relations isNkl(t), the number of nodes of total degreek
which attach to an ancestor node of total degreel. For ex-
ample, in the network of Fig. 1, there areN156 nodes of
degree 1, withN125N135N1552. There are alsoN252
nodes of degree 2, withN2552, andN351 node of degree
3, with N3551. The correlation function is not defined fo
the initial node. Generally,Nkl is defined fork>1 and l
>2, and obeys the sum ruleNk5( lNkl . A gratifying fea-
ture of the rate equation approach is that the correlation fu
tion Nkl can be understood in a natural and simple fashio
3-8
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ORGANIZATION OF GROWING RANDOM NETWORKS PHYSICAL REVIEW E63 066123
A. Linear connection kernel

For the GN with the linear attachment kernelAk5k, the
joint distributionNkl(t) evolves according to

M1

dNkl

dt
5@~k21!Nk21,l2kNkl#1@~ l 21!Nk,l 212 lNkl#

1~ l 21!Nl 21dk1 . ~36!

The first two terms on the right-hand side account for
change inNkl due to the addition of a link onto a node o
degreek21 ~gain! or k ~loss!, while the second set of term
gives the change inNkl due to the addition of a link onto th
ancestor node. Finally, the last term accounts for the gai
N1l due to the addition on the new node.

Asymptotically, M1→2t and Nkl→tnkl , and we use
these hypotheses to reduce Eqs.~36! to the time-independen
recursion relations

~k1 l 12!nkl5~k21!nk21,l1~ l 21!nk,l 21

1~ l 21!nl 21dk1 . ~37!

This can be reduced to a constant-coefficient inhomogene
recursion relation by the substitution

nkl5
G~k!G~ l !

G~k1 l 13!
mkl ~38!

to yield

mkl5mk21,l1mk,l 2114~ l 12!dk1 . ~39!

By solving Eq. ~39! for the first few k, one can grasp the
pattern of dependence onk and l and thereby infer the gen
eral solution

mkl54
G~k1 l !

G~k12!G~ l 21!
112

G~k1 l 21!

G~k11!G~ l 21!
. ~40!

This solution can also be obtained in a more systematic m
ner by the generating function method~see below for the
shifted linear kernel!. Combining Eqs.~38! and ~40!, we fi-
nally obtain

nkl5
4~ l 21!

k~k11!~k1 l !~k1 l 11!~k1 l 12!

1
12~ l 21!

k~k1 l 21!~k1 l !~k1 l 11!~k1 l 12!
. ~41!

The important feature of this result is that the joint dist
bution does not factorize, that is,nklÞnknl . This confirms
our earlier assertion that correlations between the degree
connected nodes form spontaneously. This is arguably
most important distinction between classical random gra
— where node degrees are uncorrelated—and the GN.

While the solution of Eq.~41! is unwieldy, it greatly sim-
plifies in the scaling regime,k→` and l→`, with y5 l /k
kept finite. The scaled form of the solution is
06612
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nkl5k24
4y~y14!

~11y!4 . ~42!

For fixed largek, the distributionnkl has a single maximum
at y* 5(A3325)/2>0.372. Thus a node whose degreek is
large is typically linked to another node whose degree is a
large; the typical degree of the ancestor is 37% of the deg
of the daughter node. In the complementary case of a fi
degreel for the ancestor node, the distributionnkl reaches a
maximum whenk51, i.e., the daughter node is usually da
gling. From Eq.~41!, we find that this configuration occur
with a probability

n1l5
2~ l 21!~ l 16!

l ~ l 11!~ l 12!~ l 13!
. ~43!

Finally, when bothk and l are large and their ratio is als
very different from 1, the limiting behaviors ofnkl are

nkl→H 16~ l /k5! whenl !k

4/~k2l 2! whenl @k. ~44!

This last result demonstrates the correlations in the netw
most cleanly. If there were no correlations, thennknl would
be proportional to (kl)23.

B. General connection kernels

In general, correlations between the degrees of neigh
ing connected nodes exist for any attachment kernel.
analysis of these correlations for an arbitrary kernel is
dious, and we merely outline some of the primary results
the relatively simple cases of the shifted linear and cons
attachment kernels.

In the former case, we follow the same approach as
linear kernel, to reduce the rate equation for the correlat
function to recursion relations of a similar form to Eq.~37!,
viz.

~k1 l 1213w!nkl5~k1w21!nk21,l1~ l 1w21!

3@nk,l 211nl 21dk1#. ~45!

Here nl is determined from Eq.~12!. In analogy with Eq.
~38!, the substitution

nkl5
G~k1w!G~ l 1w!

G~k1 l 1313w!
mkl ~46!

reduces Eqs.~45! to

mkl5mk21,l1mk,l 211dk1W
G~ l 1313w!

G~ l 1212w!
, ~47!

whereW5(21w)G(312w)/@G(11w)#2. We solve recur-
sion ~47! by the generating function method@40#. Multiply-
ing Eq. ~47! by xkyl , and summing over allk>1,l>2, we
find that the generating function
3-9
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M~x,y!5 (
k51

`

(
l 52

`

mklx
kyl ~48!

is given by

M~x,y!5
Wxy2

12x2y (
j 50

`
G~ j 1513w!

G~ j 1412w!
yj . ~49!

ExpandingM(x,y), we obtain

mkl5W(
j 50

l 22
G~k1 l 222 j !G~ j 1513w!

G~k!G~ l 212 j !G~ j 1412w!
. ~50!

Equations~46! and ~50! constitute an exact solution for th
correlation function of the GN with the shifted linear attac
ment kernel.

When the parameterw is an integer, we can reducenkl to
a rational function. In the general case, the exact solu
also simplifies in several extreme limits. Whenk@ l , the
dominant contribution tonkl is provided by the first term in
the sum in Eq.~50!. Assuming, additionally, thatl @1 and
repeatedly using the asymptotic relationG(N1n)/G(N)
→Nn asN→`, we ultimately find

nkl.W
G~513w!

G~412w!
l 11wk2522w, k@ l @1. ~51!

In the complementary case ofl @k@1, all the terms in the
sum of Eq.~50! are important. However, we can simplif
this sum by employing the above asymptotics for the ratio
gamma functions, and then replacing the sum by an ea
computable integral. We find

nkl.WG~21w!k22l 222w. ~52!

When the attachment kernel is uniform, correlations
tween the degrees of a node and its ancestor still develop
see how this comes about quantitatively, we again follow
same steps as those which led to Eq.~37!, and find that the
joint distributionnkl now satisfies the recursion relation

3nkl5nk21,l1nk,l 21122( l 21)dk1 . ~53!

This recursion relation can again be solved by the genera
function technique, to give

nkl5
1

2l 21
2

1

3l 21 (
i 50

k21
G~ l 211 i !

G~ l 21!G~ i 11!

1

3i . ~54!

To appreciate the qualitative behavior of the joint distrib
tion nkl , it is again useful to fix one variable and vary th
other. For fixedl, Eq. ~54! shows thatnkl has a maximum a
k51. The magnitude of this maximum isn1l522( l 21)

232( l 21). To analyze the behavior whenk is fixed, it is
convenient to transform Eq.~54! into

nkl5
1

3l 21 (
i 5k

`
G~ l 211 i !

G~ l 21!G~ i 11!

1

3i . ~55!
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Now a straightforward analysis shows that for largek, the
maximum is attained atl 5k/2.

The form of the joint distributionnkl remains relatively
complex even in the scaling regimek,l→`, with the scaling
variabley5 l /k kept finite. We determine the scaled form
the solution~55! by applying Stirling’s formula and the iden
tity G(x1l)/G(x)→xl asx→`. For y,2, we find

nkl.
1

A2pk

A11y21

22y
e2kY, ~56!

where Y5ylny2(y11)ln@(y11)/3#. For y.2, it is prefer-
able to use the solution in the form of Eq.~54!. After some
algebra, we can verify that the dominant contribution equ
22( l 21), that is,independentof k @46#.

Finally, the limiting behavior of the correlation function i

nkl→2213H 32(k1 l 22) @kl 22/~ l 22!! # whenl !k

22( l 22) whenl @k.

~57!

Thus correlations are strong even for the random attachm
kernel, and the qualitative behavior is similar to that of t
linear attachment kernel.

VI. LARGE-SCALE PROPERTIES

The degree of a node is an important but local netw
characteristic, and we now seek to quantify more global f
tures of the network. One such characteristic is the partiti
ing of the network into anin componentand anout compo-
nentwith respect to any node~Fig. 5!.

The in component to nodex is the set of all nodes from
which nodex can be reached by following a path of directe
links. Similarly, the out component of nodex is the set of
nodes which can be reached by following the path direc
links which emanate from nodex. For the GN model, the ou
component is just a single path, while in more realistic n
works both the in and out components will be branched.
the context of citations, the in component is the set of
publications which refer tox, either directly or through in-
termediate reference lists untilx is reached. The out compo
nent is the set of cited publications generated by iterativ
following the reference list~s! of x and its ancestors.

A. In-component size distribution

The size distribution of the in component can be eas
obtained by the rate equation formalism for the GN with

FIG. 5. In component and out component of nodex.
3-10
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ORGANIZATION OF GROWING RANDOM NETWORKS PHYSICAL REVIEW E63 066123
uniform attachment kernel and also for the GNR. Given
equivalence between the latter and the GN with a shif
linear kernel, the latter case is also soluble. We start by c
sidering the GN with the uniform attachment kernel. In th
case, the numberI s(t) of in components withs nodes satis-
fies the rate equation

dIs

dt
5

~s21!I s212sIs
t

1ds1 . ~58!

To understand this equation, first consider the loss term.
an in component of sizes there ares nodes in which the
attachment of a new node causes this component to incr
in size by 1. This gives a loss rate forI s which is propor-
tional to s. If there is more than one in component of sizes
they must be disjoint, so that the total loss rate forI s is
simply sIs . A similar argument applies for the gain term
Finally, the overall factor oft21 converts these rates to no
malized probabilities. Curiously, Eq.~58! is almost identical
to the rate equations for the degree distribution of a GN w
a linear attachment kernel, except that the prefactor is e
to t21 rather than to (2t)21.

From Eq.~58! we can determine all moments of the i
component size distribution,In(t)5(s>1snI s(t). The zeroth

moment obeysİ051, whose solution isI0(t)5I0(0)1t.
This is obvious, since the total number of in components
equal to the total number of nodes. The first moment ob
İ1511I1 /I0, whose asymptotic solution isI1(t);t lnt. We
shall see that this logarithmic factor is an outcome of
asymptotic power law forI s with the tail decaying ass22.

To solve forI s(t), we note that it again grows linearly i
time. Thus we substitute the ansatzI s(t)5t i s into Eq.~58! to
obtain i 151/2 and i s5 i s21(s21)/(s11), which immedi-
ately leads to

i s5
1

s~s11!
. ~59!

For this s22 decay, the momentsIn diverge whenn>1.
However, the size of the largest in component,smax5t, pro-
vides an upper threshold in the computation of the mome
For example,I1;(s<tsIs(t)5t lnt. It is intriguing that the
algebraic in-component distribution coexists with an exp
nential in-degree distribution,nk522k.

Similarly, we can determineI s(t) for the GNR model. In
this case, the numberI s(t) of in-components withs nodes
satisfies

dIs

dt
5

@s221~12r !#I s212@s211~12r !#I s

t
~60!

for s>2, andİ 1512(12r )I 1 /t. This rate equation can b
understood in a similar manner as Eq.~58!. Consider the loss
term for an in component of sizes. There are two possibili-
ties to consider:~i! If the apex of the in component is ini
tially chosen, then the new node will attach to this apex w
probability 12r ~i.e., attach with no redirection!. ~ii ! If any
other of thes21 nodes of the in component is chosen, t
new node will surely attach to the in component even
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redirection occurs. These two processes give a loss rate fI s
which is proportional to@s211(12r )#I s . Solving for the
in-component distribution in this process now yieldsI s(t)
5t i s , with

i s5
12r

~s2r !~s112r !
. ~61!

Remarkably, the asymptotic power lawI s}s22 holds for any
r. It is striking that this apparently universal behavior h
also recently been observed in measurements of the Inte
@47#.

Since the GNR model is identical to the GN with th
shifted linear attachment kernelAk5k1@(1/r )22#, Eq.~61!
also applies to the in-component distribution for the GN w
shifted linear attachment kernels. For example, the
component distribution for the linear kernel is simp
i s52/(4s221). Since the sameI s}s22 decay holds for a
GN with both constant and linear attachment kernels,
conjecture that the in-component distribution exhibits a u
versals22 decay for anarbitrary attachment kernel, as lon
as it does not grow faster than linearly with node degree

B. Out-component size distribution

The out component from each node reveals basic insig
into the ‘‘genealogy’’ of the growing network in an ex
tremely simple fashion. For example, it allows us to estim
the diameter of the network, an important characteris
which has been measured for the web graph@48,49# and for
social networks@23#.

For this characterization, we begin by reorganizing t
GN into a genealogical tree according to a procedure wh
is suggested by the growth process itself. Generationg50
contains a single ‘‘seed’’ node. The nodes which attach
the seed node form generationg51, and generally the node
which attach to nodes in generationg form generation
g11, independentof when the attachment actually occur
Thus the position of a node in the genealogical tree depe
only on the position of the ancestor node andnot on when
the node is introduced. In this respect, the GN genealog
tree differs from typical genealogies, where each new g
eration is born into a progressively later position in the g
nealogical tree. For example, the network of Fig. 1 has fi
nodes in the first generation and four nodes in the sec
generation, leading to the genealogical tree of Fig. 6. T
sizes of all generations grow continuously, except for g
erationg50 which always consists of a single node.

FIG. 6. Genealogy of the growing random network of Fig.
The indices indicate when a node is introduced, while the ance
determines where a new node is positioned.
3-11
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Once we understand the genealogical structure of the
we simultaneously establish the out-component distribut
Indeed, the numberOs of out components withs nodes is
equal toLs21, the number of nodes in generations21 in the
genealogical tree. We therefore computeLg(t), the size of
generationg at time t. We start with the simplest situatio
when the attachment rate is uniform. In this case,Lg(t) in-
creases when a new node attaches to a node in the pre
generation. This occurs with rateLg21 /M0, where M0(t)
511t is the total number of nodes. Because of the simp
ity of the corresponding rate equations, we use an exact
pression forM0 rather than the asymptotic expressionM0
;t, as was done in solving for the in component. Thus
write

dLg

dt
5

Lg21

11t
. ~62!

Solving these equations gives

Lg~t!5
tg

g!
where t5 ln~11t !. ~63!

We therefore conclude that for a fixed~large! time, the gen-
eration size grows withg when g,t, reaches a maximum
size which is equal to

Lmax.
t

A2p lnt
~64!

when g5t, and then decreases and eventually become
order 1 wheng5et. The distributionLg quickly decays
when g exceeds the cutoff valueet. At time t, the genea-
logical tree therefore contains approximatelyet generations.
Hence the diameterD of the network is approximately 2et,
or

D'2elnN, ~65!

whereN511t is the total number of nodes. Thus the diam
eter of anevolvingGN exhibits the sameN dependence as
static random graph@4#.

We can also find the generation size distribution
shifted linear attachment kernels. It is again simpler to der
the rate equations in the framework of the GNR model, a
then transcribe the results to the shifted linear kernel. For
GNR model, the rate equation for the generation size dis
bution is

dLg

dt
5

~12r !Lg211rL g

11t
~66!

for g.1, andL̇15(11t)21@11rL 1#. The first term in Eq.
~66! has the same origin as in a GN without redirection, a
the second term accounts for the change inLg due to the
redirection. In the latter case, the new node provisiona
attaches to a node in generationg; this occurs with a relative
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probability Lg . However, by the redirection process, th
new node actually attaches to a node in generationg21, and
thereby joins generationg.

To solve Eq.~66!, we again uset5 ln(11t), and apply the
Laplace transform technique. After some elementary ste
we obtain

Lg11~t!5E
0

t

dx
@~12r !x#g

g!
exr. ~67!

From this solution, we find that for a fixed~large! time, the
generation size grows withg when g,(12r )t, reaches a

maximum valueLmax.t/A2p(12r )lnt at g5(12r )t, and
then decreases wheng.(12r )t. Eventually the generation
size becomes of order 1 wheng5Gt, whereG is the root of
equationGln@G/(12r)#5G1r. The diameter of the network
is thenD'2Gt.

These two solvable cases again suggest that the genea
of the GN is robust, as long as the attachment kernel does
grow faster than linearly with node degree. For superlin
kernels, however, the genealogy changes drastically. W
the attachment exponent exceeds 2, there will be only a
generations overall, and one generationg* will contain all
but a finite number of nodes. For such a network, the
node will reside in generationg* 21. When the attachmen
exponent lies in the range 1,g,2, a single generation will
also contain almost allt nodes. However, the number o
nodes which reside in other generations is of ordert22g and
thus grows as well. Additionally, the number of nonemp
generations grows indefinitely with the total number
nodes.

The above results can be reformulated in terms of
out-component distribution. In particular, for a GN with
uniform attachment kernel, the numberOs of out compo-
nents withs nodes is equal to

Os~t!5
ts21

~s21!!
where t5 ln~11t !. ~68!

Similar results apply for the linear attachment kernel, su
gesting that the out-component distribution is robust as lo
as the attachment kernel does not grow faster than line
with node degree.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we have analyzed the structure of the gro
ing network~GN! model and shown that many of its prop
erties can be easily determined within a rate equation
proach. We have found that the GN has a power-law n
degree distributionNk(t);tk2n for asymptotically linear at-
tachment kernels, with an exponentn which is always larger
than 2. By tuning parameters of the model in a reasona
way, it is easy to obtain a node degree distribution which
in quantitative agreement with available data for the w
graph@14–16,19–21,49#.

A remarkable feature of this network is the spontaneo
development of correlations between connected nodes. T
correlations provide a much more sensitive characteriza
3-12
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of the structure of growing networks than the extensiv
studied degree distribution. These correlations are also
cial features which distinguish the GN from classical rand
graphs. Thus testing for the presence of correlations betw
node degrees in large evolving networks may provide cru
insights to help determine the underlying mechanism of th
growth.

We have also studied two specific large-scale proper
of the network, namely, the size distributions of the in a
out components with respect to a given site. The
component distribution exhibits a robusts22 power-law be-
havior, wheres is the component size, as long as the atta
ment probability does not grow faster than linearly with no
degree. The out-component distribution reveals the basic
nealogical feature that the number of ‘‘generations’’ in t
network grows logarithmically with the total number o
nodes, again for attachment kernels which do not grow fa
than linearly in node degree.

The qualitative agreement between the degree distr
tions of real evolving networks, such as the web graph,
the GN is reassuring given that the model ignores many
portant features of real networks. Nevertheless, a numbe
characteristics of real growing networks are difficult to tre
in the framework of the GN model. One important such e
ample is the out-degree distribution. Within the GN mod
the out-degree of each node is 1 by construction. In contr
for real growing networks the out-degree distribution ha
power-law form@49#. Additionally, the average in- and ou
degrees at each node are generally larger than 1; for the
graph, for example,̂i &5^ j &'7.5 @49#.

There are several natural ways to extend the GN mode
generate an average out-degree which is greater than
simple construction is to link every new node to more th
one earlier node, as already discussed in Ref.@20#. Let us
consider a network which is built by attaching every ne
node to exactlyp earlier nodes. For the linear attachme
kernel, the degree distributionNk(t), which is now defined
only for k>p, evolves according to

dNk

dt
5

p

M1
@~k21!Nk212kNk#1dkp . ~69!

Clearly, the average in-degree^ i & and out-degreêj & of each
node in this network are equal top. By applying the basic
approach of Sec. III to this rate equation, we find that
degree distribution again asymptotically approaches a st
distributionNk→tnk , with

nk5
2p~p11!

k~k11!~k12!
for k>p. ~70!
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Thus for the linear attachment kernel, the average node
gree does not affect the exponentn of the degree distribu-
tion. However, for other solvable examples, the feature
attaching the new node to more than one preexisting n
leads to different degree distributions. For example, for
shifted linear kernel we find

nk5const3
G~k1w!

G~k131w1w/p!
for k>p, ~71!

np5S 11p
p1w

2p1wD 21

. ~72!

This gives the asymptotic behaviornk;k2(31w/p). Thus the
exponent of the degree distributiondependson the average
node degree, withn531w/p.

The multiple linking construction also reduces the numb
of nodes with in-degree zero. For example, for a GN with
shifted linear attachment kernel, the fraction of such node
n15(21w)/(312w), which is always larger than 1/2
However, for the multiple linking construction, the fractio
of nodes with in-degree zero is reduced to the valuenp given
in Eq. ~72!. If we usep57 to reproduce the correct averag
node degree of the web graph, the fraction of nodes w
in-degree zero always exceeds 1/8, which, however, ap
ently disagrees with web data@49#. Thus, while multiple at-
tachment does reduce the number of poorly connected no
this reduction is still insufficient to account for web-grap
data. However, it is clear that the multiple linking constru
tion has the potential to provide a better description of c
tion data.

Another shortcoming of multiple attachment is that it ca
not dynamically generate a nontrivial out-degree distributi
However, we can extend the GN model by allowing for cr
ation of links between existing nodes@50#. This simple con-
struction allows us to generate nontrivial out-degree distri
tions which closely match web-graph data. An even m
challenging direction is to describe the global topologic
structure of growing networks. The GN model leads to
single-component tree graph, while the web graph has
merous disconnected components. A deeper understan
of the web graph may provide valuable insights to help
velop algorithms for web crawling, searching, and comm
nity discovery.
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